딥러닝은 인간의 학습 및 인지능력을 닮은 인공지능을 실현하기 위해 여러 분야에서 활용하고 있으며, 높은 사양의 컴퓨팅 파워가 요구되고 연산 시간이 많이 소요되는 복잡한 구조의 인공신경망에 의한 딥러닝은 컴퓨터 사양이 향상됨에 따라 성능이 개선된 다양한 딥러닝 모델이 개발되고 있다. 본 논문의 주요 목적은 영상의 딥러닝을 위한 합성곱 신경망 중에서 최근에 FAIR (Facebook AI Research)에서 개발한 Mask R-CNN을 이용하여 항공영상에서 건물을 탐지하고 성능을 평가하는 것이다. Mask R-CNN은 영역기반의 합성곱 신경망으로서 픽셀 정확도까지 객체를 의미적으로 분할하기 위한 딥러닝 모델로서 성능이 가장 우수한 것으로 평가받고 있다. 딥러닝 모델의 성능은 신경망 구조뿐 아니라 학습 능력에 의해 결정된다. 이를 위해 본 논문에서는 모델의 학습에 이용한 영상에 다양한 변화를 주어 학습 능력을 분석하였으며, 딥러닝의 궁극적 목표인 범용화의 가능성을 평가하였다. 향후 연구방안으로는 영상에만 의존하지 않고 다양한 공간정보 데이터를 복합적으로 딥러닝 모델의 학습에 이용하여 딥러닝의 신뢰성과 범용화가 향상될 것으로 판단된다.
중심투영 기하를 가진 항공사진과 마찬가지로 IKONOS 위성 영상도 CCD 라인에서 중심투영 기하를 갖는다. 이로 인해 건물, 지형 등에 의한 영상 폐색이 존재하지만, IKONOS 영상의 정사보정을 위해 RPC 표정정보를 이용하여 폐색을 감지하는 것은 쉽지 않다. 따라서 본 연구에서는 영상 취득시의 위성 고도각과 방향각을 이용하여 폐색 영역을 탐지하고 중복 영상을 활용한 폐색 영역의 영상복원을 수행하여, 실제적인 IKONOS 정사 영상을 제작하였다. 그리고, 생성된 정사 영상의 위치정확도로부터 폐색 탐지 알고리즘의 적합성을 평가하였다.
LIDAR의 표고점 데이터는 건물, 수목 등의 개체를 구성하는 비지면점과 순수한 지표면을 나타내는 지면점들이 섞여있기 때문에 이들을 분리하는 과정이 필요하다. 지금까지 연구된 방법들은 몇 가지 입력 요소가 필요하여 완전 자동화를 이루지는 못하고 있으며, 다양한 크기의 개체를 동시에 자동으로 찾아내기 어렵고 경사진 지형에 대해서는 적용하기 어려운 문제점을 가지고 있다. 이에 본 논문에서는 원 데이터의 동일 스캔 라인 상에 존재하는 이웃 점들 간의 경사를 이용하여 입력 요소를 최소화하여 개체를 추출하고자 한다. 이웃하는 두 점플 간의 경사를 이용하여 비지면점을 탐지하여 이웃하는 지면점의 높이 값으로 대체하며 갱신된 값을 바로 다음 연산에 반영시킴으로써 윈도우를 사용하거나 그룹화 할 필요가 없다. 또한 갱신된 값을 전파시키기 때문에 복잡한 지붕을 가지는 건물도 추출할 수가 있다. 이와 같은 연산을 두 방향에 대하여 수행하여 경사진 지형에 대하여 적용할 수 있도록 하였으며 천안과 마산지역에 대하여 테스트를 수행하였다.
고정밀 위성영상의 자동분석은 지도제작, 감시, 자원탐사 등을 효율적으로 수행하는데 있어 중요하다. 그러나, 도심지역의 고정밀 위성영상의 자동분석은 그림자, 분광정보의 시변성, 영상의 복잡성 등 때문에 현재의 기술로 해결하기 어려운 부분들이 산재해 있다. 본 논문에서는 디지털 수치지도 상의 건물객체들을 고정밀 위성영상에 중첩하여 도심지역의 건물들의 변화 탐색을 용이하게 하는 방법을 제안한다. 제안된 방법에서는 수치지도상의 건물들을 매개변수화 하고, 전처리된 고정밀 위성영상에서 일반화된 Hough 변환 방법을 이용하여 탐색하고, 탐색된 부분에 중첩시킨다. 중첩된 영상은 건물들의 변화 여부를 빠르게 찾는데 도움을 줄 수 있다.
실내에서 보행자의 움직임을 추적하기 위해 AP를 이용한 WiFi 핑거프린팅, 별도의 센서를 이용하는 방법 등 다양한 방법이 연구되고 있다. 본 논문은 보행자의 움직임을 추적하여 스마트 폰의 지자계 센서를 이용해 코너를 찾아 건물의 실내 레이아웃을 추측하기 위한 방법을 제시하고 그 성능을 분석한다.
우수한 성능을 가지는 딥러닝 모델을 생성하기 위해서는 충분한 양의 학습자료가 필요하다. 하지만, 원격탐사 분야에서 충분한 양의 학습자료를 구축하기 위해서는 많은 시간과 비용을 필요로 한다. 따라서 적은 수의 학습자료를 활용한 딥러닝 모델의 전이학습(transfer learning)의 중요성이 증대되고 있다. 본 연구에서는 사전에 제작된 공개데이터셋을 기반으로 국내 정사영상 및 수치지도를 활용한 전이학습을 통해 국내 다시기 정사영상 내 존재하는 건물객체의 변화에 대한 탐지를 수행하였다. 이를 위하여, 변화탐지를 위한 공개데이터셋을 HRNet-v2 모델을 통하여 선행학습을 수행하고, 국내 정사영상 및 수치지도를 이용한 학습자료에 전이학습을 수행하였다. 전이학습에 대한 영향을 분석하기 위하여 두 곳의 실험지역에 전이 학습된 모델을 포함한 다양한 딥러닝 모델의 결과를 평가한 결과, 전이학습을 활용한 연구가 가장 우수함을 확인하였다. 이를 통하여, 전이학습을 활용해 부족한 양의 학습자료 문제를 해결하고, 다양한 원격탐사 자료에 대하여 효과적으로 변화탐지 기법을 적용할 수 있음을 확인하였다.
건물에서 재난이 발생할경우, 건물 내 인원을 신속히 구조하여 사상자를 최소화하는 것은 단연 최우선순위가 된다. 이러한 구조활동을 위해서는 건물내 어디에 몇 명이 있는지를 알아야 하는데, 실시간으로 알기가 어렵다보니 주로 건물주나 경비원 등 관계자의 진술이나 층별 면적, 수용 인원과 같은 기초자료에 의존하는 실정이다. 따라서 빠르고 정확하게 재실인원 정보를 파악하여 현장에 대한 불확실성을 낮추고 골든타임내 효율적인 구조활동을 지원하는 것이 반드시 필요하다. 본 연구는 컴퓨터 비전 알고리즘을 활용하여 이미 건물에 설치되어 있는 여러대의 CCTV 가 촬영한 이미지 로부터 건물 위치별 재실인원을 계수하는 방법론을 제시한다. 계수 방법론은 (1)카메라별 관심선(LOI) 설정을 통한 다중카메라 네트워크 환경구축, (2)딥러닝을 활용한 모니터링 구역내 사람 탐지 및 추적, (3)다중 카메라 네트워크 환경을 고려한 인원 합산 세단계로 구성된다. 제안된 방법론은 5층 건물을 대상으로 세 개의 시간대 별로 수행된 현장 실험을 통해 검증되었다. 최종 결과는 89.9%의 정확도로 재실자를 인식하는 것으로 나타났으며, 층별, 구역별 합산결과도 93.1%, 93.3%의 정확도로 우수했다. 층별 평균MAE와 RMSE는 각각 0.178과 0.339이었다. 이 처럼 실시간으로 제공하는 건물내 재실자 정보는 초기 재난 대응단계에 신속하고 정확한 구조활동을 지원 할 수있다.
방염제 도포 후 나타나는 목조건축물의 문제점을 파악하기 위해 통계자료 분석 및 현장조사를 수행하였다. 방염제 도포 후 백화현상과 단청 박락현상이 목조건축물에서 가장 빈번히 나타났다. 이러한 문제점은 기둥, 연목, 가구부재 등 방염제의 도포가 상대적으로 많이 이루어지는 건축물의 상부에서 가장 높게 나타났다. 현장에서 방염제를 도포한 건물과 도포하지 않은 건물을 파악하기 위해 P-XRF를 이용하여 총 20개 종의 원소를 분석하였다. 이 중 현장의 모든 방염제 처리구에서 황 원소(S)가 나타났기 때문에 이를 방염제 도포의 탐지자로 설정하였다. 이를 통해 현장에서 방염제의 도포를 확인할 수 있는 비파괴분석을 방법을 정립할 수 있었다. 실제 송광사(전남 순천)의 목조건축물을 대상으로 한 잔류성분분석을 통해 실제 현장적용이 가능함을 확인하였다.
현대의 대형 건물은 복잡한 전기 배선 또는 가스 배관 등의 설비를 갖추고 있어서 다양한 화재 사고가 발생할 가능성이 커졌다. 이에 따라 무선의 다점 온도 측정 센서를 손쉽게 여러 위치에 설치 가능하도록 저렴하게 개발하여 적용함에 의하여 화재를 조기에 탐지하고 그 피해의 크기를 최소화하는 것이 필요하다. 무선 온도 센서의 송신기는 4채널로 9600 bps의 전송속도와, 10 mW의 출력으로 915 MHz 통신 주파수를 갖고 수신기와 작동되도록 구성하였다. 온도범위 $-55{\sim}150$도 사이에서 사용할 수 있도록 검증된 반도체 온도 센서 소자를 기본으로 사용하여 4개의 채널을 구성하고 실험을 수행한 결과 개발된 센서 시스템이 화재 탐지용으로 적용이 가능함을 확인하였다.
아스팔트 도로표면의 균열은 자동차 속도, 연료 소비량, 도로주행 시 승차감, 도로표면의 내구성 등에 영향을 미친다. 이러한 도로의 균열은 장시간 방치 시 상당히 위험한 결과를 초래할 수 있다. 사람이 직접 균열을 찾아 내어 적절한 조치를 취하기에는 너무 많은 시간과 비용이 소모된다. 또한 고가의 레이저 장비 차량들을 활용하기에는 초기 비용과 장비 운용에 어려움을 가진다. 이에 본 연구에서는 UAV 영상을 이용해 컴퓨터 비전 기반의 관심영역(ROI: Region of Interest) 설정과 에지 검출 알고리즘을 적용하여 도로표면의 균열탐지 방안을 제시하였다. 본 연구 결과는 무인항공기를 활용한 효율적인 도로표면 결함탐지 및 유지보수 방안으로 제시될 수 있다. 또한 도로 이외 건물빌딩의 외벽, 대규모 저장 탱크 등 다양한 건축, 토목 구조물에 발생된 균열 탐지에 활용이 가능하며 비용저감 효과를 기대할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.