• Title/Summary/Keyword: 거푸집설계

Search Result 80, Processing Time 0.022 seconds

Development of Method for Manufacturing Freeform EPS Forms Using Sloped-LOM Type 3D Printer (Sloped-LOM 방식 3D 프린터를 이용한 비정형 EPS 거푸집 제작 공법 개발)

  • Ahn, Heejae;Lee, Dongyoun;Ji, Woojong;Lee, Woojae;Cho, Hunhee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.171-181
    • /
    • 2020
  • Recently, free-formed construction technology is becoming a new measure of representing technological superiority and sociocultural ingenuity. However, the CNC processing technology utilizing the existing wood and iron form has limitations in terms of the manufacturing time and material cost. Therefore, in this study, the method and process of manufacturing free-formed EPS form using S-LOM-based 3D printing technology were suggested. Furthermore, through the mock-up test, a comparative analysis of the manufacturing time and precision with CNC milling technology was conducted. The results show that S-LOM-based 3D printing technology has reduced manufacturing time about 57.4% compared to CNC milling technology during the free-formed EPS form manufacturing process. In addition, compared to the design drawings, the maximum error value was 20.5mm, proving the applicability of S-LOM-based 3D printing technology. The results of this study are expected to contribute to the improvement of S-LOM method and the activation of S-LOM method by verifying the applicability of S-LOM-based 3D printing technology.

크리프와 건조수축을 고려한 철근콘크리트 기둥과 동바리의 축력 재분배 해석법

  • 김선영;이태규;김진근;이수곤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.629-636
    • /
    • 2001
  • To apply the research results to the design and the construction of the high rise buildings, long-term behavior of reinforced concrete structure have been widely studied. However, shoring and reshoring at early ages have not been considered in the most of studies. The removal of forms and shores has been dealt with one construction sequence. i.e. the deformation occurred at the early age before the removal of shore has been neglected. In this paper, two-dimensional frame analysis program for long-term behavior of reinforced concrete was developed. In the developed program, construction sequence including the settlement and the removal of shores is considered to predict axial force variation due to forms ,shores, and time-dependent concrete stiffness. Analysis results show that the time-dependent axial force of shores is reduced, and the redistributed axial force of the interior column is greater than the value by elastic analysis and that of the exterior column is smaller. In order to demonstrate the validity of this program, the test frame was constructed in sequence of the placement of concrete, form removal, reshoring, shore removal, and the application of additional load. The proposed program predicts experimental results well.

Photovoltaic Application in System Formwork Operations of High-rise Building Construction (초고층 시스템거푸집 공사의 태양광에너지 활용 방안 연구)

  • Kim, Tae-Hoon;Lee, Myung-Do;Lee, Ung-Kyun;Cho, Hun-Hee;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.116-126
    • /
    • 2011
  • Recently, eco-friendly energy has been employed in diverse fields of industry in order to reduce environmental pollution and secure a new growth engine. In particular, practical applications of photovoltaic energy, such as building integrated photovoltaic systems, have been implemented to the construction industry based on the extensive interest in photovoltaic power as an unlimited and sustainable energy. While the construction of a high-rise building requires large amounts of energy, methods of reducing energy consumption in the construction phase have rarely been studied. Based on this motivation, the research proposes a photovoltaic based formwork system (PVFS), and then performs a design and feasibility analysis for its application to the construction of a high-rise building. Using a case study, the research implements various analyses, including area, position, and total allowable weight required by PVFS, and evaluates the influences of PVFS on the construction processes, as well as its economic feasibility. The proposed PVFS can be adopted to a real-world project in the near future, depending on the advancement of technology and economic feasibility. The results of this research will contribute to establishing a construction environment that promotes a reduction of energy consumption by using eco-friendly energy in the construction phase.

Design and Construction of a 1:5 Scale 10-Story R.C. Apartment Building Model for Earthquake Simulation Tests (지진모의실험을 위한 10층 R.C. 공동주택의 1:5 축소모델 설계 및 시공)

  • Hwang, Seong-Jun;Lee, Kyung-Bo;Kang, Chang-Bum;Lee, Han-Seon;Lee, Sang-Ho;Oh, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.55-66
    • /
    • 2011
  • The purpose of this study was to develop an efficient process in the design and construction of a 1:5 scale 10-story R.C. apartment building model for an earthquake simulation test. The reduction ratio of the specimen was determined by the size ($5m{\times}5m$) and pay load (600kN) of the available shaking table and the availability of model reinforcements. For efficiency and quality control of the reinforcement work, prefabrication was used. Construction was conducted in two steps, the wall in one step, and another step for the slab, because it was impossible to remove the formwork of a wall if the walls and slabs in a story were constructed in one step. The slip form construction method was used repetitively for walls. The formwork of a wall was made with veneer and acryl plate on each side, so it was possible to check the quality of the concrete placing. To construct this model, it took roughly six months with five full-time research assistants, for a total of 602 man days of labor in construction.

Experimental Study for the Bending Behavior of Precast Concrete Panel and Composite Deck for Railway Bridge (철도교 바닥판용 프리캐스트 패널과 합성 바닥판의 휨거동에 대한 실험적 연구)

  • Seol, Dae-Ho;Lee, Kyoung-Chan;Youn, Seok-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.21-31
    • /
    • 2018
  • This paper presents an experimental investigation on the structural performance of precast ribbed panel specimens and bridge deck specimens fabricated from the panels. The panel specimens are developed for permanent deck forms of railway bridges (PSC girder). The decks of railway bridges have short lengths compared with highway bridges. Therefore, precast panels for railway bridges are different from those of highway bridges. The precast panels have ribs designed for crack control at the bottom of the sections. Two kinds of specimens were examined: one with 400-mm width and one with 1200-mm width. Three specimens of each type were fabricated, and a total of 12 specimens were tested. In this test, the ultimate load, strain of the reinforcement and concrete, crack width, deformation, and slip were measured. The structural performance of the specimens was assessed using the Korea railway bridge design code and Eurocode. All specimens met the current design criteria for structural strength and serviceability.

Development of Corner-Supported Auto Climbing Formwork System (강합성코어벽을 활용한 코너지지형 거푸집시스템 개발)

  • Hong, Geon-ho;Shim, Woo-Kyung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.171-178
    • /
    • 2019
  • Auto Climbing Formwork System (ACS) for construction of high-rise building is a construction method for automatically lifting the formwork system supported by the anchor on the pre-constructed concrete wall. It has excellent construction speed and quality, but it has the possibility of structural failure depending on the quality of concrete and also has low economical efficiency due to the use of foreign technology. In order to overcome these problems, this study conducted an optimum design for the development of a new concept of Corner Supported Auto Climbing System (CS-ACS) in conjunction with the development of corner steel-reinforced concrete core wall system. For the design the formwork system, the basic module and structural member compositions were planned, and the structural analysis program was used to analyze the optimum member's cross section and spacing. As a result, the horizontal displacement and the stress of the horizontal members were influenced by the spacing more than the cross-section of the member. On the other hand, vertical members did not affect the displacement and stress of the formwork system. The form tie was very effective in controlling the displacement when adjusting the spacing of the horizontal members, but when the spacing of the form tie is more than 1,500mm, it is analyzed that form tie is yielding in basic module. When the span of the formwork system is more than 30m, it is analyzed that the basic module needs to be changed because of the increase of overall displacement.

Programming for the Structural Analysis of Form Structure (건축 거푸집 설계 응력산정 프로그램 개발에 관한 기초적 연구)

  • 손기상
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.21-28
    • /
    • 1993
  • Occupational Safety & Health Code requires to calculate Design Load and stress for the approval within thirty working days prior to initiating each construction site work This study is to develop an easy and useful program that each safety manager. Controller or engineers are able to make output for the above mentioned form structure analyses without knowledge or engineering background of it. Therefore. three, randomly selected. different major student and engineers verified if they could make output. really without the engineering background. And then some deficiencies are corrected after finding those from the program operation.

  • PDF

A Study on the Development of Strength Prediction Model and Strength Control for Construction Field by Maturity Method (적산온도 방법에 의한 강도예측모델 개발 및 건설생산현장에서의 강도관리에 관한 연구)

  • Kim, Moo-Han;Jang, Jong-Ho;Nam, Jae-Hyun;Khil, Bae-Su;Kang, Suk-Pyo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.87-94
    • /
    • 2003
  • Construction plan and strength control have limitations in construction production field because it is difficult to predict the form removal strength and development of specified concrete strength. However, we can have reasonable construction plan and strength control if prediction of concrete strength is available. In this study, firstly, the newly proposed strength prediction model with maturity method was compared with the logistic model to test the adaptability. Secondly, the determination of time of form removal was verified through the new strength prediction model. As the results, it is found that investigation of the activation energy that are used to calculate equivalent age is necessary, and new strength prediction model was proved to be more accurate in the strength prediction than logistic model in the early age. Moreover, the use of new model was more reasonable because it has low SSE and high decisive factor. If we adopt new strength prediction model at construction field, we can expect the reduced period of work through the reduced time of form removal.

An Experimental Study on the Structural Performance of Horizontally Curved Precast PSC Girder (프리캐스트 곡선 PSC 거더의 구조 성능에 관한 실험연구)

  • Lee, Doo Sung;Choi, Woo Suk;Kim, Tae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.747-757
    • /
    • 2015
  • The main purpose of this study is to investigate the static behavior of a horizontally curved prestressed concrete (PSC) girder. A 30m long full-scale curved PSC girder with 80.0m radius is fabricated by a portable curved form system. Deflections and concrete strains at the middle of span were measured. The obtained experimental results have been compared to those from F.E.A. analysis. When a initial crack developed, the applied load was 1.3 times the service design load and the vertical deflection at the middle of span satisfied the requirement for a live load state according to the Korea Bridge Design Specifications (2010). Also, the ductility of the full scale specimen satisfied the limit in the Specifications (2010). To verify the experimental results, a numerical F.E. analysis was carried and confirmed that the data were similar with results from the test above. The horizontally curved PSC girder fabricated on site was found to have enough strength for safety under and after construction.

Evaluation for Approximate Bending Moment Coefficients of Non-Composite Form Deck One-Way Slab considering Unequaled Elastic Deflection of Steel Beams (철골보의 부동탄성처짐을 고려한 비합성데크 일방향 슬래브의 근사적인 휨모멘트 계수 평가)

  • Kim, Ho Soo;Lim, Young Do
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.373-383
    • /
    • 2006
  • In a steel structural system, noncomposite form deck one-way slab is the plate element supported by four-edged steel beams with unequaled stiffness. However, design criterion has analyzed the one-way slab as the continuous beam. Because the end beams that support the one-way slab have elastic supports t hat cause different deflections according to the support conditions and locations, the bending moments corresponding to the support ic support effect is not considered in the design criterion. Accordingly, to conduct a reasonable estimation of approximate moment coefficients considering the unequaled elastic support conditions, this study analyzes and estimates various models with varia bles for the ratios of live load to dead load and pattern arangements of live loads and span lengths. The analytical methods considering the finite three-dimensional plate element, the two-dimensional elastic support and the infinite stifnes suport are performed.