국내의 도로교통 소음측정방법은 도로변에서 최대의 교통량이 통행할 것으로 추정되는 시간대에 도로교통 전체 소음을 측정하는 방법(SPB)을 채택하고 있다. 반면 저소음포장의 효과를 측정하기 위하여 타이어 주위에 마이크를 설치하여 타이어/노면의 소음을 직접 측정하는 방법(CPX)도 있다. 측정이 용이한 근접소음 측정결과가 도로 전체의 소음에 미치는 영향에 대한 연구는 아직 없다. 본 연구에서는 측정이 용이한 CPX법으로 측정한 소음을 이용하여 측정이 매우 까다로운 SPB의 결과를 추정하기 위한 방법을 제안하고자 한다. 연구방법으로는 한국도로공사에서 실시한 대규모 소음 측정시험결과를 이용하고, 이 시험구간에 대해 실시한 근접소음에 대한 데이터를 활용한다. 한국도로공사에서 실시한 실험결과는 저소음포장이 10.4dB의 소음저감 효과가 있는 것으로 보고되고 있다. 그리고 CPX측정에서는 저소음포장의 소음저감 효과는 평균 10.7dB이었고 이것은 SPB측정법에서 측정된 10.4dB의 소음저감 효과와 유사하며, 측정 위치에 상관없이 소음저감 효과가 나타난다고 보고되고 있다. 본 연구에서는 위치에 상관없이 소음저감 효과가 동일한 이유, 소음 감소량이 유사한 이유, 마이크로폰의 위치에 따른 소음의 변화와 CPX와 SPB 측정치와의 관계를 소음의 합성과 거리감쇠 개념을 이용하여 증명하고 도로교통 소음예측 프로그램에 도로포장의 CPX측정결과를 변수로 포함하는 것이 소음예측의 신뢰성 향상에 매우 중요함을 증명하였다. 도로교통소음에는 도로포장의 종류와 상태가 큰 영향을 미침에도 불구하고 소음의 예측에 도로포장에 대한 영향은 하나의 상수로 표현되고 있다. 도로포장의 종류와 상태를 반영하는 소음의 측정과 예측이 필요하다.
최근 국내에서 건설되고 있는 주거건물과 주상복합건물은 단일건물보다는 다수의 건물군으로 구성되어 있는 경우가 많다. 단일건물의 경우도 환기 및 채광성을 비롯한 외관상의 문제와 상업성을 고려하여 하층부는 하나의 건물로 이루어지고 중 상층부로 갈수록 두개의 건물로 나누어져 두개의 동이 하나의 건물로 구성되어 있는 건축물이 많이 건설되고 잇는 추세이다. 이와 같이 높고 세장하며 복잡한 건축물은 질량과 감쇠가 낮을 뿐만 아니라 바람에 의한 건물군 사이의 상호작용효과 등에 의해 구조적인 안전성과 사용성은 풍하중에 의해 결정되어진다. 그러나 현재 다수의 건물군으로 이루어진 건축물의 구조설계시 인접한 동사이의 상호작용 효과에 대해 규명되어 있지 못하며 또한 그 상호작용 효과를 예측하기란 어려운 일이다. 따라서 본 연구에서는 현존하거나 현재 건설중에 있는 두 개동을 가진 건축물의 현황을 파악하여 그 패턴을 모델화 한 후, 풍동실험(wind tunnel test)을 통해 두 개의 동 사이의 인동거리에 따른 풍응답 상호작용 효과를 가속도응답을 중심으로 비교분석하였다. 본 연구의 결과로부터 건물군에 대한 풍응답 상호작용효과의 기초적 자료를 제시할 것이며 나아가 좀더 합리적이고 경제적인 구조설계를 위한 자료로 활용될 수 있을 것이다.
드렌처 헤드의 형상이 화재확산 차단을 위한 수막의 유동특성 및 복사 감쇠에 미치는 영향에 관한 실험적 연구가 수행되었다. 헤드의 형상인자로서 오리피스 출구와 반사판의 거리(h) 그리고 반사판의 직경(D)이 변화되었으며, 오리피스의 직경(d)은 고정되었다. 주요 결과로서, h의 증가는 방수량과 분사각의 증가를 가져오지만, D의 증가에 따라 분사각의 변화는 감소한다. D의 증가는 방수량 증가에 매우 작은 영향을 미치며, 분사각의 큰 감소를 초래한다. 또한 D의 증가는 보다 편평한 수막 패턴을 생성시킬 수 있지만, 분사각 내의 더 낮은 액적 균일도를 가져온다. 작동압력의 증가에 따라 평균 액적직경은 크게 감소하지만, 일정한 압력 조건 하에서 헤드 형상변화는 액적직경 변화에 큰 영향을 주지 않는다. 마지막으로 일정한 작동압력의 조건에서 드렌처 헤드의 복사 감쇠효과는 h 및 D의 변화에 따른 방수량과 액적 균일도에 의해 각각 영향을 받는 것으로 확인되었다.
본 논문에서는 수리학적 유역추적 모형인 선형 Muskingum-Cunge(M-C)법에 있어서 격자간격과 같은 수치적 인자의 변화가 단위폭사면에서의 유출수문곡선에 미치는 영향을 소개한다. 수치계산의 결과에 의하면, 유출특성은 수치적 또는 물리적으로 의미를 갖는 Courant 수 C 및 cell Reynolds 수 D의 값에 좌우되는데, C 값은 1에 접근할수록 D 값은 증가할수록 수치분산에 의한 진동은 발생하기 어렵다. C<1인 경우는 수치진동이 이동파의 전방에 발생한다. C>1인 경우는 파의 후방에 발생하는데, 이 때는 수치확산의 효과로 인해 수치진동은 작아지거나 사라진다. 특성구간길이 L의 값이 작은 사면(예, 급경사사면)의 경우, M-C법은 kinematic 법과 마찬가지로 파의 감쇠를 보이지 않는다. 한편 L의 값이 큰 사면(예, 완경사 사면)에서는 M-C법은 큰 거리격자간격 (Δx)에서도 큰 D(= L/ΔX)의 값을 갖게 되어 C에 거의 관계없이 diffusion wave를 잘 재현한다. 따라서 완경사 유역의 추적에 있어 M-C 법의 적용은 매우 유효하리라고 생각된다.
음향 시스템의 지향성 제어기술은 음향의 품질 향상을 위한 핵심 기술이다. 음향 시스템에서 점 음원이 아닌 선음원을 제공하면 원거리에서 감쇠 간섭의 영향을 줄일 수 있기 때문에, 고품질의 음향을 제공할 수 있다. 특히, 라인 어레이(line-array) 스피커 시스템을 이용하면 원거리까지 균일한 고품질의 음향을 제공할 수 있다. 그러나, 고음은 파장이 짧기 때문에 라인 어레이 시스템의 스피커간의 거리가 짧아야 하지만 물리적인 한계가 있다. 본 논문에서 이러한 문제점을 해결하기 위해 웨이브 가이드를 설계하고 스피커 유닛에 장착하였다. 개발된 스피커의 성능 확인을 위해 다양한 음향특성을 측정하고 테스트 하였다. 그 결과 개발된 스피커를 이용하여 라인 어레이 음향 시스템을 구성하면 고음 영역을 포함한 모든 영역에서 선 음원을 제공할 수 있기 때문에 단일 확장 음원과 같은 효과를 얻을 수 있고, 원거리까지 고품질의 음향을 제공할 수 있음을 확인하였다.
이 연구는 불꽃파장 감지기술과 불꽃영상 감지기술을 융합한 도로터널용 자동소화설비의 화재감지성능을 평가하기 위한 실험이다. 화재감지성능을 향상시키기 위한 이 융합기술은 화재 시 화원의 위치를 파악하고, 노즐을 화원으로 향하여 화재가 발생한 장소에만 가압수를 방사함으로서 화재진압에 따른 수손피해를 줄이는 효과를 얻을 수 있었다. 도로터널의 화재 중 불꽃 및 연기가 선행되는 상황에서 각각 15 m, 20 m, 25 m, 30 m, 35 m 거리에 $70cm{\times}70cm$의 목표물을 두었을 때 화원의 위치를 파악하는지를 실험하였다. 실험결과 농연의 간섭으로 인해 자외선 및 삼파장적외선센서의 감지능력이 감쇠되는 결과를 확인하였다. 또한 농연으로 인해 불꽃이 가려진 경우 이미지센서가 농연을 감지하여 화재신호를 발신함을 확인하였다.
지하 매질의 전기적 물성 분포를 영상화하기 위한 전자탐사 토모그래피 기술개발의 일환으로 시추공의 공내수 및 케이싱이 전자탐사 반응에 미치는 영향을 정량적으로 분석하였다. 먼저 시추공에 공내수가 존재할 때 공내수의 전기전도도를 달리하며 계산한 전자탐사 반응을 고찰한 결과, 단일 시추공 탐사의 경우 송신기에 인접한 곳을 제외하고는 전자탐사 반응은 공내수에 영향받지 않는다. 시추공간 전자탐사의 경우 역시 공내수의 영향을 무시할 수 있어, 전자탐사 토모그래피의 다양한 적용 가능성을 확인하였다. 시추공에 철재 케이싱이 설치되어 있을 때, 단일 시추공 전자탐사 반응은 전적으로 케이싱에 의한 반응이며 주변 매질에 의한 영향은 무시할 수 있는 수준이다. 한편 시추공간 탐사에서는 모암의 전기전도도에 따른 영향을 감지할 수 있으나, 시추공간의 거리가 모암의 표피심도에 비해 매우 가까우면, 근거리장 효과에 의해 모암의 영향이 미약하게 되며 반대로 시추공간의 거리가 멀 경우에는 케이싱에 의한 에너지의 극심한 감쇠로 인해 신호의 측정이 불가능해진다. 따라서 적정수준의 신호수준을 유지하며 모암의 반응을 얻기 위해서는 케이싱의 특성 및 모암의 표피심도를 동시에 고려하여 주파수 범위를 결정해야 하며, 특히 단일 시추공 자료를 이용하여 케이싱의 특성을 정확히 규명할 수 있는 현장탐사 기술의 도움이 요구된다.
1976년 8월 16일 (북위 $34^{\circ}27'30'$ 동경 $128^{\circ}23'15'$)과 1977넌 7월 28일(북위 $34^{\circ}47'$ 동경 $128^{\circ}53'$)에 관악산호의 선박소음이 r.p.m에 따라 항해시와 정선시 (기관의 공회전)의 소음압이 해중에 분포하는 것을 조사 연구한 결과를 요약하면 다음과 같다. 1. 기관의 r.p.m.과 음압관계 r.p.m.과 음압의 증가비는 100 : 1이었으며 r.p.m. 600에서 104dB로 peak를 이루었다. 2. 외현주변의 해중해압분포 A. 정선시의 기관소음압 100,102,103,104,104 dB일때 관측점 No.1에서 69,70,72,74,75 dB No.3은 No. 1에 비해 $2\~3\;dB$ 증가해 peak를 이루었고 No.5는 No.3에 비해 $10\~15\;dB$씩 감쇠되었다. 기관소음압이 최대 일때 관측점 $No.1\~No.5$에서의 음압이 투과된 백분율은 약 $78,79,80,73,70\%$였다. B. 항해시의 선박수중소음압 정선시와 같은 기관회전 조건하에서 No.2에서 69,72,75,77,78 dB로 peak를 이고 No. 1보다 $2\~3\;dB$씩 감쇠되었다. 기관 최고소음압에 대한 $No1.\~No.5$에서의 음압투과 백분율은 약 $78,81,79,77,71\%$ 였다. 3. 항해시와 정선시의 외현해중 음압 peak점에서의 음압을 비교하면 항해시가 1 dB 높았다. 4. 선박이 멀어질 때 0 m(관측점 통과시)에서 67 dB, 1,400 m에서 56 dB였다. 5. 선박이 가까워질 때 거리 0 m에서 72 dB, 1,400 m에서 57 dB로서 멀어 질때와 비교하면 0m에서 5 dB, 600 m에서 2 pB씩 증가한 도플러 효과가 일어남을 알 수 있다. 6. r.p.m.을 600으로 하여놓고 스크류를 돌리지 않고 기관만 공회전 시킬 때 수평거리 20 m인 곳의 No.7에서 수심 10 m마다 50 m까지의 음압은 68,75,62,59,55,51 dB였다.
콘크리트 암거와 같은 지중구조물의 뒷채움시에 부등침하를 줄이기 위해서는 양질의 뒷채움 재료사용과 대형진동 다짐장비를 이용한 정밀한 다짐을 실시하는 것이 중요하다. 또한 효과적인 정밀 다짐은 진동 롤러의 강한 진동을 함께 구조물부에 근접하여 다지는 것이 필요하다. 그러나, 이와 같은 다짐방법은 과도한 충격하중 발생으로 구조물의 벽체균열 발생을 유발할 수 있다. 본 논문에서는 콘크리트 암거의 뒷채움 시공을 위하여 충격완화재의 종류와 다짐방법을 변화하여 다짐시의 구조물에 발생하는 다짐토압을 현장계측을 통하여 분석하였다. 타이어칩과 발포 폴리 스틸렌을 사용한 패널들을 뒷채움 다짐시공전 암거 벽면에 부착하였다. 충격완화재 Type A(Rubber)와 Type B(EPS)의 성능 비교를 위한 실내시험 결과 Type A는 Type B보다 작은 탄성계수와 큰 재료감쇠를 가지고 있어 보다 큰 충격완화효과를 기대할 수 있는 것으로 나타났다. 다짐장비는 대부분 큰 다짐에너지를 위하여 고주파수인 30Hz를 적용하였다. 현장계측 결과로부터 다짐하중에 의한 동적 수평토압의 크기는 다짐장비의 가진여부, 측정깊이, 다짐장비 이격거리 및 다짐방향에 의존하고 있었다. 암거의 동적 수평토압 측정결과로부터 롤러 다짐장비를 콘크리트 구조물에 직각방향으로 다짐작업을 실시하는 것이 수평방향으로 다짐하는 것 보다 다짐효과를 증가하는 것으로 나타났다.
본 연구는 유체장에 대한 Navier-Stokes방정식과 자유수면을 효과적으로 추적할 수 있는 VOF법을 지배방정식으로 사용하는 수치파동수로를 적용하여 고립파(지진해일)에 대한 이열투과성수중방파제의 파랑제어기능을 수치적으로 검토한다. 고립파의 조파는 수치파동수로의 계산영역내에 설치된 수치조파기(내부조파소스)를 이용하였으며, 구조물에 의한 고립파의 파랑변형을 논한 기존의 연구결과와 본 해석결과를 비교함으로써 본 연구의 타당성을 확인하였다. 이로부터 일렬 및 이열의 투과성수중방파제에 의한 고립파의 파랑변형, 전달율, 반사율 및 에너지플럭스를 포함한 파동장의 변화를 수치시뮬레이션하였다. 비록 한정된 범위의 연구결과이지만, $h_0/h=0.925$($h_0$는 수중방파제의 천단고, h는 수심)를 갖는 이열수중방파제의 경우에 수중방파제 배치간격 $l/L_{eff}>0.4$(여기서, $L_{eff}$는 고립파의 유효거리)의 범위에서 입사파랑의 파고는 이열수중방파제에 의해 약 60%까지 감쇠되는 것을 알 수 있었으며, 일렬수중방파제에 비해 반사율이 약 47%정도로 증가하고, 전달율은 약 18%로 감소하였다. 따라서, 본 연구에서 고립파의 제어를 위해 처음으로 도입되는 투과성이열수중방파제는 일렬의 경우와 대비하여 경제적으로, 그리고 보다 효과적으로 고립파를 제어하는 것을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.