• Title/Summary/Keyword: 거더

Search Result 901, Processing Time 0.023 seconds

FINITE STRIP ANALYSIS OF FOLDED LAMINATED COMPOSITE PLATES (유한대판법에 의한 복합적층절판의 해석)

  • Yoon, Seok Ho;Han, Sung Cheon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.41-52
    • /
    • 2001
  • In this paper the analysis of laminate composite folded plates with arbitrary angle connection like box girder is studied by finite strip method Total stiffness of laminated plate is obtained by integration of the stiffness in each layer or lamina through laminate thickness and total stiffness in each layer or lamina through laminate thickness and total tiffness matrix is obtained by substitutionto equilibrium equation derived from the minimum total potential energy theorem. The assumed displacement functions for a finite strip method in plate or box girder analysis are combinations of one-way polynomial functions in the transverse direction and harmonic functions in the span-wise direction. Finite strip method with the merits of the simplification in modeling and the reduction of analytical time is accurate in the analysis of laminate composite folded plates shaped like box firders.

  • PDF

Nonlinear Analysis of Prestressed Concrete Box Girder Bridges Using Macro Element (매크로요소를 이용한 프리스트레스트 콘크리트 박스거더 교량의 비선형 해석)

  • Oh, Byung-Hwan;Lee, Myung-Kue
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.77-87
    • /
    • 1999
  • The conventional design of prestressed concrete box girder bridges has been based on the linear elastic analyses using simplified geometric models. To overcome the restriction involved in the simplifications, a macro element for the rational analysis of prestressed concrete box girder bridges with variable cross sections is incorporated in the present analysis. Through the adoption of nonlinear material models, the behaviour of prestressed box bridges up to ultimate loading stage can be examined. The time dependent material models included in the present macro element code enable to predict the long term behaviour of prestressed concrete box girder bridges. The proposed macro element code with the nonlinear material models and time dependent routines can be efficiently used for the realistic analysis of prestressed concrete box girder bridges with arbitrary shapes.

Shear Strength of Plate Girder (플레이트거더의 전단내력)

  • Choi, Chui-Kyung;Kim, Kyu-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.169-176
    • /
    • 2003
  • In the design of plate girder web panels, it is required to evaluate accurately the elastic buckling strength under shear, whether or not the post-buckling strength is accounted for. Currently, elastic shear buckling coefficient of web panels stiffened by transverse intermediate stiffeners are determined by assuming conservatively that web panels are simply supported at the juncture between the flange and web. Although the notion of the real boundary condition at the juncture of the web and the flanges to be somewhere between simple and fixed has been recognized from early days, the boundary condition has been conservatively assumed, mainly due to lack of means to evaluate it in a rational manner. In this paper, a series of numerical analyses and experiments is carried out to provide a simple equation with some parameters especially the flange-web thickness ratio.

The Development of PLS-II Storage-ring Girder Systems at PAL (방사광 가속기 PLS-II 저장링 거더 시스템 개발)

  • Kim, Seungnam;Lee, Chaesun;Lee, Honggi;Kim, Kwangwoo;Nam, Sanghun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.690-697
    • /
    • 2013
  • The magnets and vacuum chambers, which are the main facilities of the Pohang light source are installed on the storage-ring girders. System safety and reliability should be taken into account for the precise operating of the main facilities, so vibration analysis is essential to do this. Static and seismic analyses were performed for the design of structure considering safety, and also frequency and response spectrum analyses were performed for the precise alignment. With these results, the effects of surrounding vibration were checked. This paper explains about the design and vibration analysis of girder systems.

Simplified Analysis Formula for the Launching Superstructure of ILM Bridge (압출가설시 ILM교량 상부구조의 단순 해석식)

  • Moon, Seung-Il;Jang, Jae-Youp;Lee, Hwan-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.450-453
    • /
    • 2011
  • 압출공법(incremental launching method)은 교대 배후에 거더 제작장소를 설치하고, 콘크리트를 이어쳐서 교량거더를 제작하고, 이것을 잭(jack)으로 밀어내는 가설방법이다. 이 공법에 의해 시공되는 교량의 상부단면은 시공 중에 지간의 중앙부와 지점부에 일시적이나마 모두 위치하게 된다. 따라서 단면들은 자중에 의해 발생되는 최대 정모멘트와 최대 부모멘트, 그리고 최대 전단력을 모두 경험하게 되는 구조적 특성을 가지고 있다. 한편 거더의 캔틸레버 작용을 감소시키기 위하여 거더의 선단에 압출추진코(launching nose)를 부착시킨다. 상부단면에 발생하는 이 일시적인 응력의 크기는 압출추진코의 단면특성에 따라 달라진다. 본 논문에서는 압출추진코와 상부단면의 상호작용에 관한 해석식의 정확성을 유지하고, 활용도를 높이기 위해서 압출추진코를 유사등단면(강성;등단면, 중량;변단면)으로 가정하여 단순화된 해석식을 제안하였고, 압출추진코의 단면이 등단면으로 가정한 기존 해석식의 정확성을 향상시키기 위해서 다이아프램의 중량을 집중하중으로 치환시켜 변형된 등단면 해석식을 제안하였다. 그리고 제안된 2개의 해석식의 정확성과 활용성을 판단하기 위해 실제 ILM교량 설계자료들을 통해 전산구조해석 프로그램과, 기존 해석식들과 비교 분석 하였다.

  • PDF

Support Deflection Effects in Slabs with Beam and Girder (보-거더 시스템 슬래브에서 지지부 처짐영향에 관한 연구)

  • 곽효경;송종영
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.237-249
    • /
    • 1998
  • In this study the support deflection effects in beam-girder slabs which are broadly being adopted in building structures are studied for both distributed loads and concentrated vehicle loads. Taking the finite element analysis of slabs supported with one or two cross beams, the member forces of slabs including the support stiffness have been calculated. Based on the obtained numerical results and regression analysis of those, correction factors of member forces for slabs supported with girders and cross beams have been proposed. Finally, the validity of the proposed correction factors are demonstrated through a typical design example.

  • PDF

Fatigue Analysis of Prestressed Concrete Composite Girder Bridges (프리스트레스트 콘크리트 합성거더 교량의 피로해석)

  • 김지상;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.135-144
    • /
    • 1993
  • A fatigue analysis procedure for prestressed concrete composite girder bridges is established, which includes the time-dependent effects of component materials. The procedure can take into account the movement of neutral axis depth as crack develops and give quite good agreement with experimental results available. It is also assured that Korean Standard prestressed concrete composite girder has enough fatigue resistance. The procedure in this paper gives a way to express the fatigue capacity of prestressed concrete beams in the form of S-N curve, which can be utilized under variable amplitude fatigue load.

Dynamic Behavior of Bi Prestressed Concrete Girders (프리스트레스트 콘크리트거더의 동적응답 분석)

  • Lee, Pil-Goo;Kim, Choong-Eon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.353-356
    • /
    • 2008
  • This study was performed to estimate the dynamic behavior for Bi Prestressed Concrete Girder(Bicon girder) which could introduce effectively prestressed forces into concrete girders. Dynamic behavior of PSC girder must be verified because it becomes not only slim but also long and a railway bridge which loaded regularly has risk of resonance especially. Forced vibration test using a vibration machine was executed for 20m railway bridge girder specimen to acquire dynamic characteristics(natural frequency, damping ratio) and test results showed the natural frequency of 6.632Hz and the damping ratio of 1.43%

  • PDF

Damage Monitoring of PSC Girder Bridges based on Acceleration -Impedance Signals under Uncertain Temperature Conditions (불확실한 온도 조건하의 PSC 거더 교량의 가속도-임피던스기반 손상 모니터링)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.107-117
    • /
    • 2011
  • In this study, the effect of temperature-induced uncertainty to damage monitoring using acceleration-impedance response features is analyzed for presterssed concrete(PSC) girder bridges. Firstly, a damage monitoring algorithm using global and local vibration features is designed. As global and local features, acceleration and electro-mechanical impedance features are selected respectively. Secondly, the temperature effect on the acceleration and impedance features for a lab-scaled PSC girder is experimentally analyzed. From the experimental results, compensation models for temperature-acceleration features and temperature-impedance features are estimated. Finally, the feasibility of the acceleration-impedance-based damage monitoring technique using the compensation model is evaluated in the PSC girder for which a set of prestress-loss and flexural stiffness loss cases were dynamically tested.

A Structural Performance Test of a Full-scale Pretension PSC Girder (실물모형 프리텐션 PSC 거더의 구조성능 시험)

  • Kim, Tae Kyun;Lee, Doo Sung;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1741-1751
    • /
    • 2013
  • The main purpose of this study is to investigate the static behavior of a prestressed concrete (PSC) girder using pre-tension method. A 30m long full-scale pretension PSC girder is fabricated by the portable fabrication system and tested. All results have been compared to those obtained from F.E.A results. Deflections at the middle of girders have been measured for evaluation. Also, strains of concrete at the middle of span have been measured. From the results of experimental, the load when initial crack was developed was obtained to be 1.75 time the unfactered design load in the full-scale girder specimen. Also, the data of specimen are satisfied the desgin requirements of ductility on the Korea Bridge Design Specification(2010). In service state, the vertical deflection at center of test specimen when a initial crack was developed is satisfied the vertical deflection requirement under live load of the Korea Bridge Design Specification(2010). To verify the experimental results, we numerical analyze the test and confirmed that the data were similar with results from the test above. The pretension girder fabricated in site were found to have enough strength for safety under and after construction.