• Title/Summary/Keyword: 거더해석

Search Result 468, Processing Time 0.027 seconds

Flexural Strength of Composite HSB Girders in Positive Moment (HSB 강합성거더 정모멘트부의 휨저항강도)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.389-398
    • /
    • 2010
  • The flexural strength of composite HSB I-girders under a positive moment was investigated using the moment-curvature analysis method to evaluate the applicability of the current AASHTO LRFD design specifications to such girders. A total of 2,391 composite I-girder sections that satisfied the section proportion limits of the AASHTO LRFD specifications was generated by the random sampling technique to consider a wide range of section properties. The flexural capacities of the sections were calculated inthe nonlinear moment-curvature analysis in which the HSB600 and HSB800 steels were modeled as an elasto-plastic strain-hardening material, and the concrete, as a CEB-FIP model. The effects of the ductility ratio and the compressive strength of the concrete slab on the flexural strength of the composite girders made of HSB and SM520-TMC steels were analyzed. The numerical results indicated that the current AASHTO LRFD equation can be used to calculate the flexural strength of composite girders made of HSB600 steel. In contrast, the current AASHTO LRFD equation was found to be non-conservative in its prediction of the flexural strength of composite HSB800 girders. Based on the numerical results of this study for 2,391 girders, a new design equation for the flexural strength of composite HSB800 girders in a positive moment was proposed.

Dynamic Response of PSC I shape girder being used wide upper flange in Railway Bridge (확장된 상부플랜지 PSC I형 거더교의 동특성 및 동적안정성 분석)

  • Park, Jong-Kwon;Jang, Pan-Ki;Cha, Tae-Gweon;Kim, Chan-Woo;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.125-135
    • /
    • 2015
  • The tendency of more longer span length being required economical in railway bridges is studying about PSC I shaped girder. In this case, it is important to analyze and choose the effective girder section for stiffness of bridge. This study investigates the dynamic properties and safety of PSC I shaped girder being used wide upper flange whose selection based on radii and efficiency factor of flexure for railway bridge in different span type. In addition, 40m PSC Box girder bridge adopted in Honam high speed railway is further analyzed to compare dynamic performance of PSC I shaped girder railway bridge with same span length. Time history response is acquired based on the mode superposition method. Static analysis is also analyzed using standard train load combined with the impact factor. Consequently, the result met limit values in every case including vertical displacement, acceleration and distort.

An Exact Analysis of Steel Box Girders with the Effects of Distortional Deformation of Sections (단면변형의 효과를 포함한 강상자형 거더의 엄밀한 해석)

  • 진만식;이병주;김문영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2004
  • The main goal of this study is to develop MATLAB programming for an analysis of distortional deformations and stresses of the straight box girder. For this purpose, a distortional deformation theory is firstly summarized and then a BEF (Beam on Elastic Foundation) theory is presented using analogy of the corresponding variables. Finally, with governing equations of the beam-column element on elastic foundation, an exact element stiffness matrix of the beam element and nodal forces equivalent to concentrated and distributed loads are evaluated via a generalized linear eigenvalue problem. In order to verify the efficiency and accuracy of this method, distortional stresses of box girders with multiple diaphragms are presented and compared with results by FEA.

Behavior of Steel Box Girder Bridge According to the Placing Sequences of Concrete Slab (II) (강합성 상자형 교량의 바닥판 타설에 따른 거동 연구(II) - 해석적 연구 및 균열제어 -)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.133-142
    • /
    • 2000
  • This study deals with behavior of steel box girder bridges according to the concrete slab casting sequences and sectional types. The time dependent behavior of bridges caused by the differential setting of slab concrete resulting from time gap for each part of slab deck in a sequential placing method produces is analyzed. In correlation studies between girder section types and placing sequences, time dependent effects of concrete creep and shrinkage are implemented in the analytical model proposed in the previous study. Finally, field recommendations in terms of concrete slump and relative humidity are suggested to prevent early transverse cracking of concrete slabs.

  • PDF

Steel Box Girder Bridge Models of Light Rail Transit with HR Plate (HR Plate의 경량전철 강박스거더교 적용모델)

  • Lee, Seong-Haeng;Yim, Chae-Sun;Hwang, Nak-Yuen;Jung, Kyoung-Sup
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.554-562
    • /
    • 2007
  • To increase the demand of HR Plate with thickness up to 22mm, it is necessary that HR Plate is applicable to full member in steel bridge including main girder. In this study, availabilities of the narrow steel box girder of light railway transit with HR Plate width as a main member are discussed. Computational analysis is performed in 15 bridge models of light railway transit with beam element and plate element. As an analysis results, three models in tight railway transit are presented. In conclusion, it is validated that HR Plate can be applying to narrow steel box girder in the light railway transit.

A Study on Inelastic Behavior of Monosymmetric Singly Stepped Beam Subjected to Uniform Load (등분포 하중을 받는 일축대칭 일단 스텝보의 비탄성 거동 특성 고찰)

  • Park, Yi-Seul;Park, Jong-Sub
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.738-740
    • /
    • 2012
  • 최근 변단면 거더의 경제성을 고려하여 장경간 거더 교량과 강골조 구조물에 변단면보의 사용이 증가하고 있으며, 고강도 강의 등장으로 인해 변단면보의 정확한 좌굴 강도의 평가가 매우 중요시 되고 있다. 본 논문에서는 기존에 연구된 탄성 횡-비틀림 좌굴 강도에 관한 연구를 바탕으로하여 별로 비탄성 구간에 비지지 길이가 존재하는 일축대칭 I형 변단면보의 횡-비틀림 좌굴 강도 해석을 실시하였다. 해석에는 유한요소해석프로그램인 ABAQUS(2007)가 사용되었으며, MINITAB(2006)을 이용하여 간편한 설계식을 제안하고 있다. 일단 계단식 단면을 가지는 보에 대하여 고려하였으며, 플랜지 길이 방향 비, 너비방향 비, 두께의 비로 계단식 I형 보를 나타내었다. 집중 하중을 적용시켰으며 비선형 해석을 위해 잔류응력 및 초기변형과 재료비선형을 고려하였다. 본 연구 결과에서 제안된 식은 향후 다양한 하중이 작용하는 비탄성 횡-비틀림 좌굴 강도에 대한 연구에 많은 도움이 될 것이다.

  • PDF

Interaction of Flexure-Torsional by eccentric load in horizontal curved 'I' shape girder (편심하중이 작용하는 수평 곡선 I 형 거더의 휨·비틀림 상호작용)

  • Lim, Jeong-Hyeon;Lee, Kee-Sei;Kim, Hee-Soo;Choi, Jun-Ho;Kang, Young-Joung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6385-6390
    • /
    • 2015
  • With bending moment, torsional moment due to geometric properties as "Initial curvature" acts in horizontally curved I-girder. These behavior causes the secondary effect of bending in minor-axis because of interaction between bending and torsion. The bending and torsion interaction cause a loss of load bearing capacity by induced the early inelastic or plasticity condition in curved girder. Also eccentric load by movements of traffic can increase torsion. However, Equation of interaction between bending and torsion for straight girder, not deal with characteristics of curved girder behavior in previous studies, can be overestimated for ultimate strength in horizontally curved I-girder acting vertical force. Therefore, using more rational, obvious suggestion is required when design curved girder. In this study, we identified the bending-torsional moment interaction for the horizontally curved I-girder of the eccentric load acting by FEM analysis.

Three Dimensional Model for Dynamic Moving Load Analysis of a PSC-I Girder Railway Bridge (PSC-I 거더 철도교량의 3차원 동적 이동하중 해석 모델)

  • Cho, Jeong-Rae;Kim, Dong-Seok;Kim, Young Jin;Kwark, Jong-Won;Jang, Seung Yup
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.286-297
    • /
    • 2013
  • In this paper we evaluated dynamic stability, considering the effects of modeling and analysis methods on moving load analysis, for which a sophisticated 3 dimensional model of a PSC-I type girder bridge was used. For this purpose, we suggested a reasonable modeling method and the physical properties of the concrete and ballasted track system involved. We also analyzed the response characteristics according to: 1) the type of track system; 2) whether or not the track was modeled; 3) whether or not the distance between the girder center and the bearing were considered; 4) the analysis method (i.e., direct integral and modal analysis); 5) whether or not the frequency was filtered.

A Structural Performance Test of a Full-scale Pretension PSC Girder (실물모형 프리텐션 PSC 거더의 구조성능 시험)

  • Kim, Tae Kyun;Lee, Doo Sung;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1741-1751
    • /
    • 2013
  • The main purpose of this study is to investigate the static behavior of a prestressed concrete (PSC) girder using pre-tension method. A 30m long full-scale pretension PSC girder is fabricated by the portable fabrication system and tested. All results have been compared to those obtained from F.E.A results. Deflections at the middle of girders have been measured for evaluation. Also, strains of concrete at the middle of span have been measured. From the results of experimental, the load when initial crack was developed was obtained to be 1.75 time the unfactered design load in the full-scale girder specimen. Also, the data of specimen are satisfied the desgin requirements of ductility on the Korea Bridge Design Specification(2010). In service state, the vertical deflection at center of test specimen when a initial crack was developed is satisfied the vertical deflection requirement under live load of the Korea Bridge Design Specification(2010). To verify the experimental results, we numerical analyze the test and confirmed that the data were similar with results from the test above. The pretension girder fabricated in site were found to have enough strength for safety under and after construction.

Ultimate Strength Prediction Formula Estimation of Aluminium Alloy Plate Girders Subjected to Patch Loading (패치로딩을 받는 알루미늄 합금 플레이트 거더의 최종강도 예측식 추정)

  • Oh, Young-Cheol;Seo, Kwang-Cheol;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.543-551
    • /
    • 2015
  • In this paper, Used on the bridge and ship, investigate the physical relationship of aluminium plate girders(A6082-T6) considering the marine environment. Plate girder will experience the patch loading such as moving load, surcharge in the product life cycle. The ultimate strength of aluminum plate girders subjected to these loads applied multiple numerical model and performed the elasto-plastic large deflection series analysis and was proposed the predicted formula for regression analysis. The predicted formula was shown by the relationship of ultimate strength and slenderness. If the slenderness is low(0-2.3), it causes a 9 % error, and If the slenderness is higher(2.3-4.0), it causes a 1-2 % error. Therefore, the propriety of proposed prediction formular was found to be assess rationally.