Seung-Hwan Choi;Gi-Jo Park;Ki-Sook Chung;Woo-Sug Jung;Kyung-Seok Kim
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.2
/
pp.95-101
/
2023
Globally, the importance of utilization and management of marine spatial information is being maximized, and analyzing such data is emerging as a major driving force for R&D. In Korea, it is expected that collecting marine data from the past to the present and extracting its value will play an important role in the development of science in Korea in the future. In particular, marine static data constitutes a huge big database, and it is necessary to store and store the collected data without loss as high data collection costs and high-level observation techniques are required. In addition, the Disaster Safety Intelligence Convergence Center's "Marine Digital Twin Establishment and Utilization-Based Technology Research" task requires collection and analysis of marine data, so this paper conducts a current status survey of static marine data. And we present a series of algorithms that collect and store them in a database.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.7-9
/
2012
슈퍼컴퓨터는 주로 거대 과학문제를 해결하는데 활용되었으나, 최근 산업체의 신제품 및 신기술 개발을 위한 활용이 확대되는 추세이다. 이를 보다 활성화시키기 위해서는 산업체의 연구개발자들이 슈퍼컴퓨터를 활용하여 보다 쉽고 편리하게 시뮬레이션을 수행할 수 있는 환경의 개발이 요구된다. 이를 통해 저비용/고효율의 제품 개발 기반을 확보할 수 있으며, 산업체의 글로벌 경쟁력 향상을 모색할 수 있다. 용접은 선박, 항공기 등의 대형 구조물뿐만 아니라 금속을 사용하는 소형 구조물의 접합을 위해 널리 활용되는 기술이다. K-WeldPredictor는 용접 기술의 80% 정도를 차지하는 아크 용접을 웹 사이트에서 시뮬레이션 할 수 있도록 지원하는 슈퍼컴퓨터 기반의 시뮬레이터이다. 미국 WeldPredictor와의 기술협력을 통해 개발되었으며, 슈퍼컴퓨터의 높은 보안 수준을 준수하기 위해 별도의 웹 서버를 활용하였다. 특히 웹 서버와 슈퍼컴퓨터와의 안전한 데이터 전송을 위해 SSH 로컬 포트 포워딩 기술을 활용하였다.
Proceedings of the Korean Society of Computational and Applied Mathematics Conference
/
2003.09a
/
pp.11-11
/
2003
오늘날 단일 슈퍼컴퓨터로는 처리가 불가능한 거대한 문제들의 해법이 시도되고 있는데, 이들은 지리적으로 분산된 슈퍼컴퓨터, 데이터베이스, 과학장비 및 디스플레이 장치 등을 초고속 통신망으로 연결한 GRID 환경에서 효과적으로 실행시킬 수 있다. GRID는 1990년대 중반 과학 및 공학용 분산 컴퓨팅의 연구 과정에서 등장한 것으로, 점차 응용분야가 넓어지고 있다. 그러나 GRID 같은 분산 환경은 기존의 단일 병렬 시스템과는 많은 점에서 다르며 이전의 기술들을 그대로 적용하기에는 무리가 있다. 기존 병렬 시스템에서는 주로 동기 알고리즘(synchronous algorithm)이 사용되는데, 직렬 연산과 같은 결과를 얻기 위해 동기화(synchronization)가 필요하며, 부하 균형이 필수적이다. 그러나 부하 균형은 이질 클러스터(heterogeneous cluster)처럼 프로세서들의 성능이 서로 다르거나, 지리적으로 분산된 계산자원을 사용하는 GRID 환경에서는 이기종의 문제뿐 아니라 네트워크를 통한 메시지의 전송 지연 등으로 유휴시간이 길어질 수밖에 없다. 이처럼 동기화의 필요성에 의한 연산의 지연을 해결하는 하나의 방안으로 비동기 반복법(asynchronous iteration)이 나왔으며, 지금도 활발히 연구되고 있다. 이는 알고리즘의 동기점을 가능한 한 제거함으로써 빠른 프로세서의 유휴 시간을 줄이는 것이 목적이다. 즉 비동기 알고리즘에서는, 각 프로세서는 다른 프로세서로부터 갱신된 데이터가 올 때까지 기다리지 않고 계속 다음 작업을 수행해 나간다. 따라서 동시에 갱신된 데이터를 교환한 후 다음 단계로 진행하는 동기 알고리즘에 비해, 미처 갱신되지 않은 데이터를 사용하는 경우가 많으므로 전체적으로는 연산량 대비의 수렴 속도는 느릴 수 있다 그러나 각 프로세서는 거의 유휴 시간이 없이 연산을 수행하므로 wall clock time은 동기 알고리즘보다 적게 걸리며, 때로는 50%까지 빠른 결과도 보고되고 있다 그러나 현재까지의 연구는 모두 어떤 수렴조건을 만족하는 선형 시스템의 해법에 국한되어 있으며 비교적 구현하기 쉬운 공유 메모리 시스템에서의 연구만 보고되어 있다. 본 연구에서는 행렬의 주요 고유쌍을 구하는 데 있어 비동기 반복법의 적용 가능성을 타진하기 위해 우선 이론적으로 단순한 멱승법을 사용하여 실험하였고 그 결과 순수한 비동기 반복법은 수렴하기 어렵다는 결론을 얻었다 그리하여 동기 알고리즘에 비동기적 요소를 추가한 혼합 병렬 알고리즘을 제안하고, MPI(Message Passing Interface)를 사용하여 수원대학교의 Hydra cluster에서 구현하였다. 그 결과 특정 노드의 성능이 다른 것에 비해 현저하게 떨어질 때 전체적인 알고리즘의 수렴 속도가 떨어지는 것을 상당히 완화할 수 있음이 밝혀졌다.
There is a growing requirement for big data processing which extracts valuable information from a large amount of data. The Hadoop system employs the MapReduce framework to process big data. However, MapReduce has limitations such as inflexible and slow data processing. To overcome these drawbacks, SQL query processing techniques known as SQL-on-Hadoop were developed. Apache Tajo, one of the SQL-on-Hadoop techniques, was developed by a Korean development group. External merge sort is one of the heavily used algorithms in Tajo for query processing. The performance of external merge sort in Tajo is influenced by two parameters, sort buffer size and fanout. In this paper, we analyzed the performance of external merge sort in Tajo with various sort buffer sizes and fanouts. In addition, we figured out that there are two major causes of differences in the performance of external merge sort: CPU cache misses which increase as the sort buffer size grows; and the number of merge passes determined by fanout.
With the popularization of PC, SNS and IoT, a lot of data is generated and the amount is increasing exponentially. Artificial neural network learning is a topic that attracts attention in many fields in recent years by using huge amounts of data. Artificial neural network learning has shown tremendous potential in speech recognition and image recognition, and is widely applied to a variety of complex areas such as medical diagnosis, artificial intelligence games, and face recognition. The results of artificial neural networks are accurate enough to surpass real human beings. Despite these many advantages, privacy problems still exist in artificial neural network learning. Learning data for artificial neural network learning includes various information including personal sensitive information, so that privacy can be exposed due to malicious attackers. There is a privacy risk that occurs when an attacker interferes with learning and degrades learning or attacks a model that has completed learning. In this paper, we analyze the attack method of the recently proposed neural network model and its privacy protection method.
With the advent of big data and social networks, large-scale graph processing becomes popular research topic. Recently, an optimization technique called Gorder has been proposed to improve the performance of in-memory graph processing. This technique improves performance by optimizing the graph layout on memory to have better cache locality. However, since it is designed for in-memory graph processing systems, the technique is not suitable for disk-based graph engines; also the cost for applying the technique is significantly high. To solve the problem, we propose a new graph ordering called I/O Order. I/O Order considers the characteristics of I/O accesses for SSDs and HDDs to improve the performance of disk-based graph engine. In addition, the algorithmic complexity of I/O Order is simple compared to Gorder, hence it is cheaper to apply I/O Ordering. I/O order reduces the cost of pre-processing up to 9.6 times compared to that of Gorder's, still its performance is 2 times higher compared to the Random in low-locality graph algorithms.
Journal of The Korean Association For Science Education
/
v.43
no.6
/
pp.573-582
/
2023
This study aimed to explore the potential use of artificial intelligence in science education for gifted students by analyzing the structure of abstracts written by students at a gifted science academy and comparing the performance of various elements extracted using AI. The study involved an analysis of 263 graduation theses from S Science High School over five years (2017-2021), focusing on the frequency and types of background, objectives, methods, results, and discussions included in their abstracts. This was followed by an evaluation of their accuracy using AI classification methods with fine-tuning and prompts. The results revealed that the frequency of elements in the abstracts written by gifted students followed the order of objectives, methods, results, background, and discussions. However, only 57.4% of the abstracts contained all the essential elements, such as objectives, methods, and results. Among these elements, fine-tuned AI classification showed the highest accuracy, with background, objectives, and results demonstrating relatively high performance, while methods and discussions were often inaccurately classified. These findings suggest the need for a more effective use of AI, through providing a better distribution of elements or appropriate datasets for training. Educational implications of these findings were also discussed.
Nowadays we are not able to consider and imagine anything without taking into account what is called Artificial Intelligence. Even broadcasting media technologies could not be thought of outside this newly emerging technology of A.I.. Since the last part of 20th century, this technology seemingly is accelerating it's development thanks to an unbelievably enormous computational capacity of data information treatments. In conjunction with the firmly established worldwide platform companies like GAFA(Google, Amazon, Facebook, Apple), the key cutting edge technologies dubbed NBIC(Nanotech, Biotech, Information Technology, Cognitive science) converge to change the map of the current civilization by affecting the human relationship with the world and hence modifying what is essential in humans. Under the sign of the converging technologies, the relatively recently coined concepts such as 'trans(post)humanism' are emerging in the academic sphere in the North American and Major European regions. Even though the so-called trans(post)human movements are prevailing in the major technological spots, we have to say that these terms do not yet reach an unanimous acceptation among many experts coming from diverse fields. Indeed trans(post)humanism as a sort of obscure term has been a largely controversial trend. Because there have been many different opinions depending on scientific, philosophical, medical, engineering scholars like Peter Sloterdijk, K. N. Hayles, Neil Badington, Raymond Kurzweil, Hans Moravec, Laurent Alexandre, Gilbert Hottois just to name a few. However, considering the highly dazzling development of artificial intelligence technology basically functioning in conjunction with the cybernetic communication system firstly conceived by Nobert Wiener, MIT mathematician, we can not avoid questioning what A. I. signifies and how it will affect the current media communication environment.
의사결정 시스템은 전사적인 의사결정과 전략적 정보수집을 위해 거대한 량의 정보를 빠른 시간내에 제공할 것을 요구한다. 데이타 웨어하우스는 이러한 정보를 신속히 제공하기 위해 여러 지역 데이타베이스로부터 필요한 정보를 사전에 추출하고 가공 및 통합하여 별도의 저장공간에 저장한다. 일반적으로, 웨어하우스 내의 정보는 지역 데이타베이스에 저장된 정보에 대한 실체화된 뷰로서 간주하며 지역 데이타의 변경에 따라 일관성을 유지하도록 반영해야 한다. 본 논문에서는 일관성을 유지하기 위해 정보 공유가 가능한 데이타 웨어하우스 시스템의 구조와 비-보상 실체 뷰 관리 기법을 제안한다. 본 논문에서 제안한 데이타 웨어하우스 시스템의 구조는 지역 데이타베이스에서 추출된 정보를 관리하는 별도의 지역 정보 관리자를 두어 뷰 관리자들 간의 정보 공유가 가능하게 한다. 비-보상 실체 뷰 관리 기법은 지역 데이타 변경 사건에 따른 뷰 관리 시 다른 사건에 의해 영향을 받지 않도록 하기 때문에 기본의 사전 보상이나 나중 보상 기법과는 달리 추가적인 질의 처리를 요구하지 않는 기법이다.Abstract A decision support system(DSS) commonly requires fast access to tremendous volume of information. A data warehouse is a database storing the information that is extracted, filtered and integrated from several relevant local databases to reply upon aggregated queries. The information stored in the data warehouse can be regarded as materialized views. The materialized view has to be modified according to the change of the corresponding local databases to preserve the data consistency. In this paper, we propose a data warehousing system architecture allowing information sharing (DAWINS), and a non-compensating materialized view maintenance algorithm(NCA). DAWINS architecture allows relevant information to be shared by individual view managers with local data manager for each local database. Unlikely to the pre- or post-compensating algorithms, which are required to remove the effects of some events to other view in the process of view maintenance, NCA does not require any additional query processing, since a local data manager in DAWINS already maintains the effects of update events occurring in local systems.
The objective of the High Energy Physics(HEP) is to understand the basic properties of elementary particles and their interactions. The CMS(Compact Muon Solenoid) experiment at CERN which will produce a few PetaByte of data and the size of collaboration is around 2000 physicists. We cannot process the amount of data by current concept of computing. Therefore, an area of High Energy Physics uses a concept of Tier and Data Grid. We also apply Data Grid to current High Energy Physics experiments. In this paper, we report High Energy Physics Data Grid System as an application of Grid.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.