• Title/Summary/Keyword: 객체 추출

Search Result 1,470, Processing Time 0.029 seconds

Object Tracking using variable Search Block on Realtime Image (실시간영상에서 가변탐색영역을 이용한 객체추적알고리즘)

  • Min, Byoung-Muk;Lee, Kwang-Hyoung;Oh, Hae-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.227-231
    • /
    • 2006
  • 카메라를 통하여 실시간으로 입력되는 객체의 움직임은 잡음이나 조명의 변화에 따라 정확하게 추출하고 추적하는 것이 어렵다. 따라서 실시간으로 입력되는 영상에서 객체를 추출하고 움직임을 추적하기 위해서는 고속탐색 알고리즘이 필요하다. 본 논문은 실시간영상에서 객체의 움직임을 추출하고 추적을 위하여 배경영상의 변화에 강인한 배경영상 갱신 방법과 가변적인 탐색영역을 이용한 객체추적의 빠른 알고리즘을 제안한다. 배경영상 갱신 방법은 임계값이 실험적 기준치 보다 작은 경우에는 배경영상을 갱신하고, 큰 경우에는 객체가 유입된 시점으로 판단하여 픽셀검사를 통해 객체의 윤곽점을 추출한다. 추출된 윤곽점은 객체 영역블록의 생성과 일정한 거리를 유지하는 탐색블록을 생성하여 정확하고 빠른 객체의 움직임을 추적한다. 실험결과, 제안한 방법은 95% 이상의 높은 정확도를 보였다.

  • PDF

A Design of Web-based Video Monitoring System on Real Time (실시간 웹기반 영상감시 시스템의 설계)

  • Jang, Jung-Hwa
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.479-482
    • /
    • 2010
  • 실시간 영상에서 객체 추적은 수년간 컴퓨터 비전 및 여러 실용적 응용 분야에서 관심을 가지는 주제 중 하나이다. 하지만 배경영상의 잡음을 객체로 인식하는 오류로 인하여 추출하고자 하는 객체를 찾지 못하는 경우가 있다. 본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추출하고 추적하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다. 추출된 객체의 내부점을 이용하여 최소 사각영역을 설정하고, 이를 통해 객체를 추적한다. 아울러 제안방법의 성능에 대한 실험결과를 기존 추적 알고리즘과 비교, 분석하여 평가한다.

  • PDF

The Dynamic Object Detection and Trajectory Representation for Construction of Panoramic Image (파노라믹 영상 구축을 위한 동적 객체 추출과 궤도 표현)

  • Shin, Seong-Yoon;Jang, Dai-Hyun;Shin, Kwang-Seong;Lee, Hyun-Chang;Rhee, Yang-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.06a
    • /
    • pp.45-47
    • /
    • 2011
  • 파노라믹 영상에슨 정적 파노라믹 영상과 동적 파노라믹 영상이 있다. 동적 파노라믹 영상을 생성하기 위해서는 먼저 카메라의 움직임을 계산한 후에 객체의 움직임을 식별해야 한다. 본 논문에서는 동적 객체를 추출하기 위하여 우선 어파인 파라미터로 카메라의 움직임을 추출하고, 지역적 탐색으로 객체의 움직임을 탐지한다. 영상에 동적 객체가 있는 경우 동적 객체 판별을 위하여 영역 분할 방법을 이용하여 계산한다. 이러한 동적 객체의 궤도를 나타내기 위하여 먼저 동적 객체를 추출하는데, 4분할 탐색 기법을 이용하여 추출하게 된다. 최종적으로 구축되어진 배경 파노라믹 영상위에 동적 객체의 궤도를 표현한다.

  • PDF

Stereo Matching and Objects Extraction Using Stochastic Models (확률모델에 기반한 스테레오 정합 및 객체추출)

  • 이상화;노민호;조남익;박종일
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1879-1882
    • /
    • 2003
  • 본 논문은 확률적 확산 기법 및 확률모델을 이용하여 스테레오 영상간의 대응점을 추정하고, 영상의 배경으로부터 객체를 추출해 내는 연구를 다루고 있다. 스테레오 영상의 정합 및 객체 추출을 위하여 시차, 세그먼트, 라인, 및 오클루젼 필드를 Markov random field 모델로 정의하고, 확률적 에너지 최소화 방법을 이용하여 최적의 시차 필드 및 객체추출을 수행한다. 본 논문에서는 우선 이러한 다양한 필드간의 MRF 모델링 기법을 제안하고, 각 필드에 대한 에너지 함수를 정의한다. 그리고, 확률적 확산 기법을 이용하여 각 필드에 대하여 정의된 에너지 함수를 최소화함으로써, 최적의 시차필드 및 객체추출 결과를 구한다.

  • PDF

A Robust Object Extraction Method for Immersive Video Conferencing (몰입형 화상 회의를 위한 강건한 객체 추출 방법)

  • Ahn, Il-Koo;Oh, Dae-Young;Kim, Jae-Kwang;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.11-23
    • /
    • 2011
  • In this paper, an accurate and fully automatic video object segmentation method is proposed for video conferencing systems in which the real-time performance is required. The proposed method consists of two steps: 1) accurate object extraction on the initial frame, 2) real-time object extraction from the next frame using the result of the first step. Object extraction on the initial frame starts with generating a cumulative edge map obtained from frame differences in the beginning. This is because we can estimate the initial shape of the foreground object from the cumulative motion. This estimated shape is used to assign the seeds for both object and background, which are needed for Graph-Cut segmentation. Once the foreground object is extracted by Graph-Cut segmentation, real-time object extraction is conducted using the extracted object and the double edge map obtained from the difference between two successive frames. Experimental results show that the proposed method is suitable for real-time processing even in VGA resolution videos contrary to previous methods, being a useful tool for immersive video conferencing systems.

MPEG-4 Object Browsing and Extraction by Learning (MPEG-4 객체의 브라우징 및 학습에 의한 추출 기법)

  • 양만석;오상욱;설상훈
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.11b
    • /
    • pp.115-120
    • /
    • 1999
  • 본 논문은 MPEG-4 비디오 객체의 브라우징(browsing) 및 학습을 통한 객체 추출 기법을 제안한다. 제안된 학습에 의한 객체 추출 기법은, 객체 브라우징 시 임의 접근한 프레임에서 사용자가 내용 기반의 객체를 검색하기 위해 선택한 영역에 대한 인지적인 정보를 특징벡터(feature vector)로 history에 저장, 활용함으로써 프레임 내 객체의 계층적인 군집화(clustering)를 수행한다. 이러한 기법으로 인지적 개념과 근접하게 객체를 인식할 수 있음을 실험을 통해 확인하였다.

  • PDF

Video Object Extraction in Compressed Domain (압축영역의 비디오 객체 추출)

  • Kim, Dong-Wook;Kim, Jin-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.123-127
    • /
    • 2005
  • This paper addresses the problem of extracting video objects from compressed video signals. Compressed videos include several informations about moving objects. An useful cue for object segmentation is motion vector per macroblock which sparse in MPEG. We propose a method for automatically estimating and extracting moving objects using motion vectors of macroblocks in this work.

Dynamic Object Detection and Trajectory Representation for Construction of Mosaic Image (모자이크 영상 구축을 위한 동적 객체 추출 및 궤도 표현)

  • Shin, Kwang-Seong;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.149-151
    • /
    • 2011
  • 동적 모자이크 영상 생성을 위해서는 카메라의 움직임을 계산한 후에 객체의 움직임을 인지해야 한다. 본 논문에서는 어파인 파라미터로 카메라의 움직임을 추출 하였고 지역적 탐색으로 객체의 움직임을 탐지한다. 동적 객체가 존재하는 경우엔 동적 객체 판별을 위하여 영역 분할 방법을 통하여 계산한다. 그리고 동적 객체의 궤도를 표현하기 위하여 우선적으로 동적 객체를 추출하는데 추출 방법은 4분할 탐색 기법을 이용하여 추출하게 된다. 마지막으로 구축되어진 배경 모자이크 영상위에 동적 객체의 궤도르 표현한다.

  • PDF

Web-based Video Monitoring System on Real Time using Object Extraction (객체 추출을 이용한 실시간 웹기반 영상감시 시스템)

  • Lee, Keun-Wang;Oh, Taek-Hwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.426-429
    • /
    • 2006
  • 실시간 영상에서 객체 추적은 수년간 컴퓨터 비전 및 여러 실용적 응용 분야에서 관심을 가지는 주제 중 하나이다. 하지만 배경영상의 잡음을 객체로 인식하는 오류로 인하여 추출하고자 하는 객체를 찾지 못하는 경우가 있다. 본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추출하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다.

  • PDF

Extraction of a Central Object in a Color Image Based on Significant Colors (특이 칼라에 기반한 칼라 영상에서의 중심 객체 추출)

  • SungYoung Kim;Eunkyung Lim;MinHwan Kim
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.648-657
    • /
    • 2004
  • A method of extracting central objects in color images without any prior-knowledge is proposed in this paper, which uses basically information of significant color distribution. A central object in an image is defined as a set of regions that lie around center of the image and have significant color distribution against the other surround (or background) regions. Significant colors in an image are first defined as the colors that are distributed more densely around center of the image than near borders. Then core object regions (CORs) are selected as the regions a lot of pixels of which have the significant colors. Finally, the adjacent regions to the CORs are iteratively merged if they are similar to the CORs but not to the background regions in color distribution. The merging result is accepted as the central object that may include differently color-characterized regions and/or two or more objects of interest. Usefulness of the significant colors in extracting the central object was verified through experiments on several kinds of test images. We expect that central objects shall be used usefully in image retrieval applications.

  • PDF