• Title/Summary/Keyword: 객체 추출

Search Result 1,468, Processing Time 0.028 seconds

An Efficient Coding Technique of Holographic Video Signal using 3D Segment Scanning (분할영역의 3차원 스캐닝을 이용한 홀로그래픽 비디오 신호의 효율적인 부호화 기술)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.132-140
    • /
    • 2007
  • In this paper, we proposed a new technique to encode and decode the digital hologram. Since the digital hologram (or fringe pattern) is generated by interference of light, it has much different property from natural 2D (2 dimensional) images. First, we acquisite optical-sensed or computer-generated hologram by digital type, and then extract a chrominance component. The extracted digital hologram for coding is separated into segments to use multi-view properties. The segmented hologram shows the similar characteristics with picturing an object with 2D cameras in various point of view. Since fringe pattern is visually observed like as noise, we expect that the fringe pattern has poor coding efficiency. To obtain high efficiency, the segment is transformed with DCT (Discrete Cosine Transform) which resembles hologram generation process with high performance. Each transformed segment passes the 3D scanning process according to time and spatial correlation, and is organized into a video stream. Since the segment which correspond to frame of a video stream consists of the transformed coefficients with wide range of value, it is classified and re-normalized. Finally it is compressed with coding tools. The proposed algorithm illustrated that it has better properties for reconstruction of 16 times higher compression rate than the previous researches.

A Reduction Method of Over-Segmented Regions at Image Segmentation based on Homogeneity Threshold (동질성 문턱 값 기반 영상분할에서 과분할 영역 축소 방법)

  • Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.55-68
    • /
    • 2012
  • In this paper, we propose a novel method to solve the problem of excessive segmentation out of the method of segmenting regions from an image using Homogeneity Threshold($H_T$). The algorithm of the previous image segmentation based on $H_T$ was carried out region growth by using only the center pixel of selected window. Therefore it was caused resulting in excessive segmented regions. However, before carrying region growth, the proposed method first of all finds out whether the selected window is homogeneity or not. Subsequently, if the selected window is homogeneity it carries out region growth using the total pixels of selected window. But if the selected window is not homogeneity, it carries out region growth using only the center pixel of selected window. So, the method can reduce remarkably the number of excessive segmented regions of image segmentation based on $H_T$. In order to show the validity of the proposed method, we carried out multiple experiments to compare the proposed method with previous method in same environment and conditions. As the results, the proposed method can reduce the number of segmented regions above 40% and doesn't make any difference in the quality of visual image when we compare with previous method. Especially, when we compare the image united with regions of descending order by size of segmented regions in experimentation with the previous method, even though the united image has regions more than 1,000, we can't recognize what the image means. However, in the proposed method, even though image is united by segmented regions less than 10, we can recognize what the image is. For these reason, we expect that the proposed method will be utilized in various fields, such as the extraction of objects, the retrieval of informations from the image, research for anatomy, biology, image visualization, and animation and so on.

Bundle Block Adjustment of Omni-directional Images by a Mobile Mapping System (모바일매핑시스템으로 취득된 전방위 영상의 광속조정법)

  • Oh, Tae-Wan;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.593-603
    • /
    • 2010
  • Most spatial data acquisition systems employing a set of frame cameras may have suffered from their small fields of view and poor base-distance ratio. These limitations can be significantly reduced by employing an omni-directional camera that is capable of acquiring images in every direction. Bundle Block Adjustment (BBA) is one of the existing georeferencing methods to determine the exterior orientation parameters of two or more images. In this study, by extending the concept of the traditional BBA method, we attempt to develop a mathematical model of BBA for omni-directional images. The proposed mathematical model includes three main parts; observation equations based on the collinearity equations newly derived for omni-directional images, stochastic constraints imposed from GPS/INS data and GCPs. We also report the experimental results from the application of our proposed BBA to the real data obtained mainly in urban areas. With the different combinations of the constraints, we applied four different types of mathematical models. With the type where only GCPs are used as the constraints, the proposed BBA can provide the most accurate results, ${\pm}5cm$ of RMSE in the estimated ground point coordinates. In future, we plan to perform more sophisticated lens calibration for the omni-directional camera to improve the georeferencing accuracy of omni-directional images. These georeferenced omni-directional images can be effectively utilized for city modelling, particularly autonomous texture mapping for realistic street view.

A Study on the Evaluation of the Different Thresholds for Detecting Urban Areas Using Remote-Sensing Index Images: A Case Study for Daegu, South Korea (원격탐사 지수 영상으로부터 도시 지역 탐지를 위한 임계점 평가에 관한 연구: 대구광역시를 사례로)

  • CHOUNG, Yun-Jae;LEE, Eung-Joon;JO, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.129-139
    • /
    • 2019
  • Mapping urban areas using the earth observation satellites is useful for monitoring urban expansions and measuring urban developments. In this research, the different thresholds for detecting the urban areas separately from the remote-sensing index images (normalized-difference built-up index(NDBI) and urban index(UI) images) generated from the Landsat-8 image acquired in Daegu, South Korea were evaluated through the following steps: (1) the NDBI and UI images were separately generated from the given Landsat-8 image; (2) the different thresholds (-0.4, -0.2, and 0) for detecting the urban areas separately from the NDBI and UI images were evaluated; and (3) the accuracy of each detected urban area was assessed. The experiment results showed that the threshold -0.2 had the best performance for detecting the urban areas from the NDBI image, while the threshold -0.4 had the best performance for detecting the urban areas from the UI image. Some misclassification errors, however, occurred in the areas where the bare soil areas were classified into urban areas or where the high-rise apartments were classified into other areas. In the future research, a robust methodology for detecting urban areas, including the various types of urban features, with less misclassification errors will be proposed using the satellite images. In addition, research on analyzing the pattern of urban expansion will be carried out using the urban areas detected from the multi-temporal satellite images.

Accuracy Analysis for Slope Movement Characterization by comparing the Data from Real-time Measurement Device and 3D Model Value with Drone based Photogrammetry (도로비탈면 상시계측 실측치와 드론 사진측량에 의한 3D 모델값의 정확도 비교분석)

  • CHO, Han-Kwang;CHANG, Ki-Tae;HONG, Seong-Jin;HONG, Goo-Pyo;KIM, Sang-Hwan;KWON, Se-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.234-252
    • /
    • 2020
  • This paper is to verify the effectiveness of 'Hybrid Disaster Management Strategy' that integrates 'RTM(Real-time Monitoring) based On-line' and 'UAV based Off-line' system. For landslide prone area where sensors were installed, the conventional way of risk management so far has entirely relied on RTM data collected from the field through the instrumentation devices. But it's not enough due to the limitation of'Pin-point sensor'which tend to provide with only the localized information where sensors have stayed fixed. It lacks, therefore, the whole picture to be grasped. In this paper, utilizing 'Digital Photogrammetry Software Pix4D', the possibility of inference for the deformation of ungauged area has been reviewed. For this purpose, actual measurement data from RTM were compared with the estimated value from 3D point cloud outcome by UAV, and the consequent results has shown very accurate in terms of RMSE.

Abnormal Crowd Behavior Detection via H.264 Compression and SVDD in Video Surveillance System (H.264 압축과 SVDD를 이용한 영상 감시 시스템에서의 비정상 집단행동 탐지)

  • Oh, Seung-Geun;Lee, Jong-Uk;Chung, Yongw-Ha;Park, Dai-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.183-190
    • /
    • 2011
  • In this paper, we propose a prototype system for abnormal sound detection and identification which detects and recognizes the abnormal situations by means of analyzing audio information coming in real time from CCTV cameras under surveillance environment. The proposed system is composed of two layers: The first layer is an one-class support vector machine, i.e., support vector data description (SVDD) that performs rapid detection of abnormal situations and alerts to the manager. The second layer classifies the detected abnormal sound into predefined class such as 'gun', 'scream', 'siren', 'crash', 'bomb' via a sparse representation classifier (SRC) to cope with emergency situations. The proposed system is designed in a hierarchical manner via a mixture of SVDD and SRC, which has desired characteristics as follows: 1) By fast detecting abnormal sound using SVDD trained with only normal sound, it does not perform the unnecessary classification for normal sound. 2) It ensures a reliable system performance via a SRC that has been successfully applied in the field of face recognition. 3) With the intrinsic incremental learning capability of SRC, it can actively adapt itself to the change of a sound database. The experimental results with the qualitative analysis illustrate the efficiency of the proposed method.

Fundamental Study on Algorithm Development for Prediction of Smoke Spread Distance Based on Deep Learning (딥러닝 기반의 연기 확산거리 예측을 위한 알고리즘 개발 기초연구)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • This is a basic study on the development of deep learning-based algorithms to detect smoke before the smoke detector operates in the event of a ship fire, analyze and utilize the detected data, and support fire suppression and evacuation activities by predicting the spread of smoke before it spreads to remote areas. Proposed algorithms were reviewed in accordance with the following procedures. As a first step, smoke images obtained through fire simulation were applied to the YOLO (You Only Look Once) model, which is a deep learning-based object detection algorithm. The mean average precision (mAP) of the trained YOLO model was measured to be 98.71%, and smoke was detected at a processing speed of 9 frames per second (FPS). The second step was to estimate the spread of smoke using the coordinates of the boundary box, from which was utilized to extract the smoke geometry from YOLO. This smoke geometry was then applied to the time series prediction algorithm, long short-term memory (LSTM). As a result, smoke spread data obtained from the coordinates of the boundary box between the estimated fire occurrence and 30 s were entered into the LSTM learning model to predict smoke spread data from 31 s to 90 s in the smoke image of a fast fire obtained from fire simulation. The average square root error between the estimated spread of smoke and its predicted value was 2.74.

Line-Segment Feature Analysis Algorithm for Handwritten-Digits Data Reduction (필기체 숫자 데이터 차원 감소를 위한 선분 특징 분석 알고리즘)

  • Kim, Chang-Min;Lee, Woo-Beom
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.4
    • /
    • pp.125-132
    • /
    • 2021
  • As the layers of artificial neural network deepens, and the dimension of data used as an input increases, there is a problem of high arithmetic operation requiring a lot of arithmetic operation at a high speed in the learning and recognition of the neural network (NN). Thus, this study proposes a data dimensionality reduction method to reduce the dimension of the input data in the NN. The proposed Line-segment Feature Analysis (LFA) algorithm applies a gradient-based edge detection algorithm using median filters to analyze the line-segment features of the objects existing in an image. Concerning the extracted edge image, the eigenvalues corresponding to eight kinds of line-segment are calculated, using 3×3 or 5×5-sized detection filters consisting of the coefficient values, including [0, 1, 2, 4, 8, 16, 32, 64, and 128]. Two one-dimensional 256-sized data are produced, accumulating the same response values from the eigenvalue calculated with each detection filter, and the two data elements are added up. Two LFA256 data are merged to produce 512-sized LAF512 data. For the performance evaluation of the proposed LFA algorithm to reduce the data dimension for the recognition of handwritten numbers, as a result of a comparative experiment, using the PCA technique and AlexNet model, LFA256 and LFA512 showed a recognition performance respectively of 98.7% and 99%.

Corneal Ulcer Region Detection With Semantic Segmentation Using Deep Learning

  • Im, Jinhyuk;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.1-12
    • /
    • 2022
  • Traditional methods of measuring corneal ulcers were difficult to present objective basis for diagnosis because of the subjective judgment of the medical staff through photographs taken with special equipment. In this paper, we propose a method to detect the ulcer area on a pixel basis in corneal ulcer images using a semantic segmentation model. In order to solve this problem, we performed the experiment to detect the ulcer area based on the DeepLab model which has the highest performance in semantic segmentation model. For the experiment, the training and test data were selected and the backbone network of DeepLab model which set as Xception and ResNet, respectively were evaluated and compared the performances. We used Dice similarity coefficient and IoU value as an indicator to evaluate the performances. Experimental results show that when 'crop & resized' images are added to the dataset, it segment the ulcer area with an average accuracy about 93% of Dice similarity coefficient on the DeepLab model with ResNet101 as the backbone network. This study shows that the semantic segmentation model used for object detection also has an ability to make significant results when classifying objects with irregular shapes such as corneal ulcers. Ultimately, we will perform the extension of datasets and experiment with adaptive learning methods through future studies so that they can be implemented in real medical diagnosis environment.

Prototyping a BIM-enabled Design Tool for the Auto-arrangement of Interior Design Panels - Based on the Pattern Extraction of Bitmap Image Pixels and its Representation - (BIM기반 설계를 지원하는 인테리어 패널 자동배치 도구 프로토타입 구현 - 비트맵 이미지 픽셀 패턴의 추출과 패널 표현을 중심으로 -)

  • Huang, JinHua;Kim, HaYan;Lee, Jin-Kook
    • Design Convergence Study
    • /
    • v.15 no.5
    • /
    • pp.71-83
    • /
    • 2016
  • Interior panels are usually used in finishing of interior walls for not only decorative effects but also information transfer. According to designer's design placing interior panels may need repetitive tasks and the emphasis of this paper is to support an automation of these tasks. Considering the utilization characteristics of interior panels, we propose three method to present patterns by using bitmap image pixels and interior panels' shape changes, based on the theoretical consideration. In addition, in order to approve the possibility of the proposed methods, we have implemented the BIM based interior panels auto layout tool which applied one of the three methods to present patterns by using bitmap image pixel values and panel identification attributes. This tool also supports auto generation of quantity and panel arrangement sequence information that will be used in future construction phase. We expect that this approach will also be used in other decorative objects which require repetition of the basic units, such as floor tiles.