• 제목/요약/키워드: 객체검출

검색결과 898건 처리시간 0.029초

딥러닝 기반 자동차 모델 및 번호판 인식 시스템 구현 (Implementation of Deep Learning-Based Vehicle Model and License Plate Recognition System)

  • 함경윤;강길남;이장현;이정우;박동훈;류명춘
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.465-466
    • /
    • 2022
  • 본 논문에서는 딥러닝 영상인식 기술을 활용한 객체검출 모델인 YOLOv4를 활용하여 차량의 모델과 번호판인식 시스템을 제안한다. 본 논문에서 제안하는 시스템은 실시간 영상처리기술인 YOLOv4를 사용하여 차량모델 인식과 번호판 영역 검출을 하고, CNN(Convolutional Neural Network)알고리즘을 이용하여 번호판의 글자와 숫자를 인식한다. 이러한 방법을 이용한다면 카메라 1대로 차량의 모델 인식과 번호판 인식이 가능하다. 차량모델 인식과 번호판 영역 검출에는 실제 데이터를 사용하였으며, 차량 번호판 문자 인식의 경우 실제 데이터와 가상 데이터를 사용하였다. 차량 모델 인식 정확도는 92.3%, 번호판 검출 98.9%, 번호판 문자 인식 94.2%를 기록하였다.

  • PDF

서베일런스 네트워크에서 패턴인식 기반의 실시간 객체 추적 알고리즘 (Real-Time Object Tracking Algorithm based on Pattern Classification in Surveillance Networks)

  • 강성관;천상훈
    • 디지털융복합연구
    • /
    • 제14권2호
    • /
    • pp.183-190
    • /
    • 2016
  • 본 논문은 서베일런스 네트워크에서 이동하는 객체 추적 시 영상 데이터의 전송량을 감소시키는 신경망 계산 시간의 단축 알고리즘을 제안한다. 객체 검출은 디지털화 연속된 영상으로부터 객체 존재 유무를 판단하고, 객체가 존재할 경우 영상 내 객체의 위치, 방향, 크기 등을 알아내는 기술로 정의된다. 그러나 영상 내의 객체는 위치, 크기, 빛의 방향 및 밝기, 장애물 등의 환경적 변화로 인해 객체 모양이 다양해지므로 정확하고 빠른 검출이 어렵다. 따라서 본 논문에서는 신경망을 사용하여 몇 가지 환경적 조건을 극복한 정확하고 빠른 객체 검출 방법을 제안한다. 검색 영역의 축소는 영상 내 색상 영역의 분할과 차영상을 이용하였고, 주성분 분석을 통해 신경망의 입력 벡터를 축소시킴으로써 신경망 수행 시간과 학습 시간을 단축시켰다. 실시간으로 입력되는 동영상에서 모두 실험하였으며, 색상 영역의 분할을 사용할 경우 입력 영상의 칼라 설정의 유무에 따른 검출 성공률의 차를 보였다. 실험 결과에서 보면 제안하는 방법으로써 객체의 움직임을 탐지하였을 때 기존의 방법보다 30% 정도 더 높은 인식 성능을 보여준다.

그래프 기반 아웃라이어 검출 방법

  • 정서;김상욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.159-160
    • /
    • 2010
  • 아웃라이어란 데이터 셋 내에서 다른 객체들과 상대적으로 이질적인 객체를 의미한다. 본 논문에서는 기존 그래프 기반 아웃라이어 검출 방법의 문제점을 분석한다. 이를 통해, HITS 를 기반으로 하는 새로운 그래프 기반 아웃라이어 검출 방법을 제안한다. 마지막으로, 다양한 실험을 통하여 제안하는 방법이 아웃라이어 검출에 적합함을 보인다.

객체 추적을 통한 이상 행동 감시 시스템 연구 (A Study on Monitoring System for an Abnormal Behaviors by Object's Tracking)

  • 박화진
    • 디지털콘텐츠학회 논문지
    • /
    • 제14권4호
    • /
    • pp.589-596
    • /
    • 2013
  • 사회의 범죄율 증가와 더불어 지능형 보안 시스템강화에 대한 관심이 높아지고 있다. 이에 본 연구에서는 CCTV에 획득되는 영상으로부터 객체의 이상 행동을 감지하는 시스템을 제안한다. 배경영상과의 차연산 및 모폴로지를 통해 객체를 검출하고 객체의 특징 정보를 이용해 각각의 객체를 인식하여 추적하여 이를 통해 이상행동을 탐지한다. 객체가 영상 내에서 일정시간 이상을 배회했을 때 이를 이상행동으로 판단하여 사전에 관제센터에 알려 미연에 방지할 수 있도록 한다. 특히 본 연구는 이상 행동 중 객체의 배회행위를 감지하는 것을 목표로 하며 영상 내에서 사라진 객체가 다시 영상 내로 들어 왔을 때의 이전 객체와의 동일여부를 판단할 수 있도록 하였다.

Positive Random Forest 기반의 강건한 객체 추적 (Positive Random Forest based Robust Object Tracking)

  • 조윤섭;정수웅;이상근
    • 전자공학회논문지
    • /
    • 제52권6호
    • /
    • pp.107-116
    • /
    • 2015
  • 고성능 컴퓨터와 디지털 카메라의 보급으로 컴퓨터를 이용한 객체 탐지 및 추적은 컴퓨터 비전의 다양한 응용분야에서 중요한 문제로 대두 되고 있다. 또한, 지능형 자동화 감시 장치, 영상 분석 장치, 자동화된 로봇 분야 등에서 그 필요성이 점점 부각 되고 있다. 객체 추적은 카메라를 이용하여 움직이는 객체의 위치를 찾는 처리 과정을 의미 하며, 강건한 객체 추적을 위해서는 객체의 스케일, 형태 변화, 회전에 강건하고 정확한 객체의 위치를 파악할 수 있어야한다. 본 논문에서는 랜덤 포레스트를 이용한 강건한 객체 추적에 대한 알고리즘을 제안하였다. 정확한 객체의 위치를 찾기 위해 지역 공분산과 ZNCC (Zeros Mean Normalized Cross Correlation)를 사용하여 객체를 검출하고 검출된 객체를 5개의 부분으로 나누어 랜덤 포레스트로 객체가 잘 검출 되었는지 검증 한다. 검증된 객체 중 모델을 선택하여 객체 검출이 잘못 되었다고 판단된 경우 입력 모델을 변경하여 정확한 객체를 찾도록 하였다. 제안된 알고리즘과 기존의 알고리즘들을 비교 하였을 때 비교적 정확한 객체의 위치를 잘 찾아 가는 것을 확인하였다.

객체 움직임의 의미적 단위 생성을 통한 비디오 이벤트 검출 (Video Event Detection according to Generating of Semantic Unit based on Moving Object)

  • 신주현;백선경;김판구
    • 한국멀티미디어학회논문지
    • /
    • 제11권2호
    • /
    • pp.143-152
    • /
    • 2008
  • 비디오 데이터에 대한 의미적 검출을 위해 이벤트 표현에 대한 많은 방법론이 연구되고 있지만, 아직도 저차원 특징을 이용한 내용기반 검출과 각 데이터에 주석을 정의한 주석기반 검출 방법이 대부분이다. 본 논문은 기존의 방법보다 의미적인 검색을 위해 객체 움직임 단위 생성과 이를 통한 이벤트 검출 기법을 제안한다. 첫째, 이벤트 단위로 움직임을 분류한다. 둘째, 분류된 객체 움직임에 대한 의미적 단위를 정의하고 이를 이벤트 검출에 이용하기 위해 저차원 특징과 매핑 가능한 규칙을 생성한다. 이를 통해 비디오 샷 단위의 의미적 이벤트 검출을 가능하게 한다. 제안된 내용의 유용성 평가를 위해 우리는 비디오 영상 이벤트 검출을 실험한 결과 약 80%의 정확률을 얻었다.

  • PDF

스마트 양식을 위한 딥러닝 기반 어류 검출 및 이동경로 추적 (Deep Learning based Fish Object Detection and Tracking for Smart Aqua Farm)

  • 신영학;최정현;최한석
    • 한국콘텐츠학회논문지
    • /
    • 제21권1호
    • /
    • pp.552-560
    • /
    • 2021
  • 현재 국내 수산 양식업은 스마트화를 추진하고 있지만, 여전히 양식 단계의 많은 과정에서 사람의 주관적인 판단으로 진행되고 있다. 수산 양식업 스마트화를 위해서 선행되어야 할 부분은 양식장 내 물고기들의 상태를 효과적으로 파악하는 것이다. 어류 개체 수, 크기, 이동경로, 이동속도 등을 파악하여 실시간 모니터링 할 수 있게 된다면 사료 자동 급이, 질병유무판단 등 다양한 양식자동화를 진행할 수 있을 것이다. 본 연구에서는 수중 촬영한 어류비디오 데이터를 이용하여 실시간으로 어류의 상태를 파악 할 수 있는 알고리즘을 제안하였다. 어류 객체검출을 위해 딥러닝 기반 최신 객체검출 모델들을 적용하여 검출 성능을 비교 평가 하였고, 검출 결과를 이용하여 비디오내의 연속적인 이미지 프레임에서 어류 객체 ID부여, 이동경로 추적 및 이동속도를 측정할 수 있는 알고리즘을 제안하였다. 제안한 알고리즘은 객체 검출 성능 92%(F1-score 기준)를 보였으며, 실제 테스트비디오 상에서 실시간으로 다수의 어류 객체를 효과적으로 추적하는 것을 확인하였다. 본 논문에서 제안하는 알고리즘을 이용하여 향후 사료 자동 급이, 어류 질병 예측 등 다양한 스마트양식 기술에 효과적으로 활용될 수 있을 것으로 기대한다.

로봇의 자율 항해를 위한 비전기반의 객체 인식 (Vision based Object Recognition for Autonomous Robot Navigation)

  • 김권;이창우;쉬수단;최요환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제38차 하계학술발표논문집 16권1호
    • /
    • pp.205-209
    • /
    • 2008
  • 본 논문은 입력되는 영상에서 특정 객체를 찾기 위하여 특징 검출 및 매칭 결과를 분석하여 기술한다. 영상의 특징을 추출하는 방법 중 코너를 특징으로 하는 방법인 해리스 코너 검출(Harris corner detection)을 이용하여 코너를 추출하였으며, 추출한 특징을 이용하여 다양한 크기의 템플릿을 만들어 입력된 영상과 상관계수를 구해 최대값을 가지는 위치를 찾아 입력된 영상과 객체를 매칭 시킨 결과를 분석하였다. 본 논문의 연구 결과들은 객체의 탐지 등과 같은 영상 분석 기반 기술에 활용될 수 있으리라 기대된다.

  • PDF

딥러닝 기반 CCTV 영상분석을 통한 인명지킴이 시스템 개발 (Life protection system development using CCTV video analysis on Deep learning)

  • 송혁;최인규;고민수;이대성
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2017년 정기학술대회
    • /
    • pp.327-328
    • /
    • 2017
  • 본 논문에서는 사회재난 안전사고 중 수상 안전사고를 예방 및 사고 발생시 즉각 대응을 위한 센서 융복합 상황인지 기술을 개발하였다. 실제 현장에서의 위험상황을 전문가 컨설팅을 통하여 정의하였으며 이를 영상 분석을 이용한 객체의 검출 및 객체의 추적을 통한 위험상황 검출을 개발하였다. 기존 패턴인식 기술에 비하여 우수한 성능을 보이는 인공지능 기반 딥러닝 기술을 적용하였으며 딥러닝 기술을 적용하기 위하여는 많은 수의 데이터베이스 확보가 필수적이고 이를 위하여 기존 데이터베이스의 확보 및 현장에서의 실제 데이터베이스 구축을 위한 작업을 통하여 충분한 데이터베이스를 확보하였다. 객체 검출은 최적의 속도를 확보하기 위하여 SSD 구조를 이용하였으며 객체 추적을 위해서는 Re-identification 기법을 적용하여 Tied convolution 구조를 이용하였다.

  • PDF

에지 정보와 Hough Transform을 이용한 장폐색 영역 검출 (Ileus Detection by Using Edge Information and Hough Transform)

  • 이해일;김백천;김현우;박승익;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.488-490
    • /
    • 2017
  • 본 논문에서는 장폐색 영역을 추출하는 방법을 제안한다. 제안된 방법은 Canny Edge Detector을 이용하여 X-ray 영상에서 객체들의 에지를 추출한다. 검출된 객체 에지들에서 장폐색의 영역이 형태학적으로 수평적으로 평평하다는 특징을 이용하기 위해서 Hough transform을 적용하여 수평적으로 평평한 영역을 가진 객체들을 추출하고, 추출된 객체들을 장폐색 영역으로 검출한다. 제안된 추출 방법을 25개의 장폐색 X-ray 영상을 대상으로 실험한 결과, 제안된 방법에서는 19개 대장 장폐색 영상에서는 모두 추출되었으나 6개의 소장 장폐색 영상에서는 추출에 실패하였다.

  • PDF