• 제목/요약/키워드: 개체인식

검색결과 449건 처리시간 0.039초

비디오의 객체 움직임 이해를 위한 시공간 관계 표현 (Representation of Spatio-Temporal Relations for Understanding Object Motion in Video)

  • 최준호;조미영;김판구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.883-885
    • /
    • 2005
  • 비디오 데이터에서 의미적 인식을 위해 활용되는 요소 중 하나가 객체에 대한 움직임 정보로 이는 비디오 데이터에 대한 색인과 내용 기반 검색을 수행하는데 중요한 역할을 한다. 본 논문에서는 효율적인 객체기반 비디오 검색과 비디오의 움직임 해석을 위한 시공간 관계 표현 방법을 제시한다. 비디오의 객체표현 방법은 Polygon-based Bounding Volume의 3차원 Mesh 모델을 생성한 후 이를 이용하여 비디오 내 개체의 구조적 내용을 저차원적 속성과 움직임에 대한 기본 구조로 활용하였다. 또한, 움직임 객체에 대해 시공간적 특성과 시각적 특성을 동시에 고려하여 표현되도록 하였다. 각 Vertex는 시각적 특징 중 일부분이고, 비디오 내 개체의 공간적 특성과 개체의 움직임은 Volume Trajectory로 모델링되고, 개체와 개체간의 시공간적 관계를 표현하기 위한 Operation을 정의한다.

  • PDF

은닉 마르코프 모델을 이용한 한국어 개체명 말뭉치 생성 (Generating Korean NER Corpus using Hidden Markov Model)

  • 김재균;김창현;천민아;박호민;윤호;남궁영;최민석;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.357-361
    • /
    • 2019
  • 기계학습을 이용하여 개체명 인식을 수행하기 위해서는 많은 양의 개체명 말뭉치가 필요하다. 이를 위해 본 논문에서는 문장 자동 생성을 통해 개체명 표지가 부착된 말뭉치를 구축하는 방법을 제안한다. 기존의 한국어 문장 생성 연구들은 언어모델을 이용하여 문장을 생성하였다. 본 논문에서는 은닉 마르코프 모델을 이용하여 주어진 표지열에 기반 하여 문장을 생성하는 시스템을 제안한다. 제안하는 시스템을 활용하여 자동으로 개체명 표지가 부착된 3,286개의 새로운 문장을 생성할 수 있었다. 학습말뭉치 문장과 약 70%의 차이를 보이는 새로운 문장을 생성하였다.

  • PDF

임상 문서에서 서로 떨어진 개체명 간 전이 관계 표현을 위한 조건부무작위장 내 라벨 유도 기법 연구 (A label induction method in the conditional random fields expressing long distance transition between separate entities in clinical narratives)

  • 이왕진;최진욱
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.172-175
    • /
    • 2018
  • 환자의 병력을 서술하는 임상문서에서 임상 개체명들은 그들 사이에 개체명이 아닌 단어들이 위치하기 때문에 거리상으로 서로 떨어져 있고, 임상 개체명인식에 많이 사용되는 조건부무작위장(conditional random fields; CRF) 모델은 Markov 속성을 따르기 때문에 서로 떨어져 있는 개체명 라벨 간의 전이 정보는 모델의 계산에서 무시된다. 본 논문에서는 라벨링 모델에 서로 떨어진 개체명 간 전이 관계를 표현하기 위하여 CRF 모델의 구조를 변경하는 방법론을 소개한다. 제안된 CRF 모델 디자인에서는 모델의 계산효율성을 빠르게 유지하기 위하여 Markov 속성을 유지하는 1차 모델 구조를 유지한다. 모델은 선행하는 개체명의 라벨 정보를 후행하는 개체명 엔터티에게 전달하기 위하여 선행 개체명의 라벨을 뒤 따르는 비개체명 라벨에 전이시키고 이를 통해 후행하는 개체명은 선행하는 개체명의 라벨 정보를 알 수 있게 된다. 라벨의 고차 전이 정보를 전달함에도 모델의 구조는 1차 전이 구조를 유지함으로 n차 구조의 모델보다 빠른 계산 속도를 유지할 수 있게 된다. 모델의 성능 평가를 위하여 서울대학교병원 류머티즘내과에서 퇴원한 환자들의 퇴원요약지에 병력과 관련된 엔터티가 태깅된 평가 데이터와 i2b2 2012/VA 임상자연어처리 shared task의 임상 개체명 추출 데이터를 사용하였고 기본 CRF 모델들(1차, 2차)과 비교하였다. 피처 조합에 따라 모델들을 평가한 결과 제안한 모델이 거의 모든 경우에서 기본 모델들에 비하여 F1-score의 성능을 향상시킴을 관찰할 수 있었다.

  • PDF

위키피디아를 이용한 영-한 개체명 대역어 쌍 구축 (Extracting English-Korean Named-Entity Word-pairs using Wikipedia)

  • 김은경;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2009년도 제21회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.101-105
    • /
    • 2009
  • 본 논문은 공통적으로 이용할 수 있는 웹 환경에서의 한국어 정보로 획득할 수 있는 정보의 양이 영어권 정보의 양보다 상대적으로 적다는 것을 토대로, 웹정보 이용의 불균형을 해소하고자 하는 목적으로부터 출발하였다. 최근에는 지식 정보의 세계화, 국제화에 따라 동일한 정보를 각국 언어로 제공하고자하는 연구가 꾸준히 증가하고 있다. 온라인 백과사전인 위키피디아 역시 현재 다국어로 제공이 되고 있지만 한국어로 작성된 문서는 영어로 작성된 문서의 5% 미만인 것으로 조사되었다. 본 논문에서는 위키피디아 내에서 제공하는 다국어간의 링크 정보와 인포박스 데이터를 활용하여 위키피디아 문서 내에서 개체명을 인식하고, 자동으로 개체명의 영-한 대역어 쌍을 추출하는 것을 목표로 한다. 개체명은 일반 사전에 등재 되지 않은 경우가 많기 때문에, 기계번역에서 사전 데이터 등을 활용하여 개체명을 처리하는 것은 쉽지 않으며 일반적으로 음차표기 방식을 함께 사용하여 해결하고 있다. 본 논문을 통해 위키피디아 데이터를 활용해 만들어진 영-한 개체명 대역어 사전을 구축하기 위해 사용된 기술은 추후 위키피디아 문서를 기계번역하는데 있어 동일한 방법으로 사용이 가능하며, 구축된 사전 데이터는 추후 영-한 자동 음차표기 연구의 사전 데이터로도 활용이 가능하다.

  • PDF

자소분할과 픽셀분포를 이용한 한글문자인식 (Recognition of Hangeul Character Using Grapheme Segmentation and Pixel Distribution)

  • 조영국;이동욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1919_1920
    • /
    • 2009
  • 한글 문자 인식에 관한 연구는 통계적 방법과 구조적 방법, 신경 회로망 등 다양한 방법론이 제시되어 왔다. 그러나 한글은 영문이나 숫자에 비해 방대한 문자수와 복잡한 구조로 인하여 인식에 많은 어려움을 가지고 있다. 따라서 본 논문에서는 한글을 가장 단순한 구조인 자음과 모음으로 분리한 뒤 각 개체의 픽셀 분포를 파악하고, 한글의 구조적 특징을 이용하여 자소의 행과 열에서의 peak값과 픽셀의 분포를 그룹으로 나누어 한글을 인식하는 방법을 제시한다.

  • PDF

DeNERT: Named Entity Recognition Model using DQN and BERT

  • Yang, Sung-Min;Jeong, Ok-Ran
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.29-35
    • /
    • 2020
  • 본 논문에서는 새로운 구조의 개체명 인식 DeNERT 모델을 제안한다. 최근 자연어처리 분야는 방대한 양의 말뭉치로 사전 학습된 언어 표현 모델을 활용하는 연구가 활발하다. 특히 자연어처리 분야 중 하나인 개체명인식은 대부분 지도학습 방식을 사용하는데, 충분히 많은 양의 학습 데이터 세트와 학습 연산량이 필요하다는 단점이 있다. 강화학습은 초기 데이터 없이 시행착오 경험을 통해 학습하는 방식으로 다른 기계학습 방법론보다 조금 더 사람이 학습하는 과정에 가까운 알고리즘으로 아직 자연어처리 분야에는 많이 적용되지 않은 분야이다. 아타리 게임이나 알파고 등 시뮬레이션 가능한 게임 환경에서 많이 사용된다. BERT는 대량의 말뭉치와 연산량으로 학습된 구글에서 개발한 범용 언어 모델이다. 최근 자연어 처리 연구 분야에서 높은 성능을 보이고 있는 언어 모델이며 많은 자연어처리 하위분야에서도 높은 정확도를 나타낸다. 본 논문에서는 이러한 DQN, BERT 두가지 딥러닝 모델을 이용한 새로운 구조의 개체명 인식 DeNERT 모델을 제안한다. 제안하는 모델은 범용 언어 모델의 장점인 언어 표현력을 기반으로 강화학습 모델의 학습 환경을 만드는 방법으로 학습된다. 이러한 방식으로 학습된 DeNERT 모델은 적은 양의 학습 데이터세트로 더욱 빠른 추론시간과 높은 성능을 갖는 모델이다. 마지막으로 제안하는 모델의 개체명 인식 성능평가를 위해 실험을 통해서 검증한다.

자연어 처리 및 협업 필터링 기반의 전장상황 관련 문서 자동탐색 및 요약 기법연구 (A Study on Automatic Discovery and Summarization Method of Battlefield Situation Related Documents using Natural Language Processing and Collaborative Filtering)

  • 김건영;이정빈;손미애
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.127-135
    • /
    • 2023
  • 정보통신기술이 발달함에 따라 전투공간에서 생산·공유되는 정보 및 체계 내 저장·관리되는 정보의 양이 폭발적으로 증가하였다. 이는 지휘관이 전장상황 인식 및 지휘결심을 수행하는 데에 활용할 수 있는 정보의 양이 증가하였음을 의미하지만, 한편으로는 지휘관의 정보 부담을 증가시킴으로써 신속한 지휘결심을 저해하는 요인이 되기도 한다. 이러한 한계를 극복하기 위해, 본 연구에서는 지휘관이 전장상황 보고 문서를 수신하였을 때, 체계 내 보유 문서 중에서 이를 해석하는 데에 도움을 줄 수 있는 문서들을 자동적으로 탐색 및 선별하고 요약하는 기법을 제안하였다. 첫째로, 개체명 인식 방법을 활용하여 수신된 전장상황 보고 문서로부터 개체들을 식별한다. 둘째로, 각 개체와 관련된 체계 내 보유 문서들을 탐색한다. 셋째로, 언어모델과 협업 필터링을 활용하여 이러한 문서들을 선별한다. 이때 언어모델은 수신된 보고 문서와 탐색된 문서 간의 유사도를 산출하기 위해 활용되고, 협업 필터링은 지휘관의 문서 열람 히스토리를 반영하기 위해 활용된다. 마지막으로, 선별된 문서들로부터 각 개체가 포함된 문장을 선별하고 이를 정렬한다. 실험은 군 문서와 비슷한 특성을 지니는 학술논문들을 활용하여 수행하였고, 제안된 방법의 타당성을 검증하였다.

패턴인식을 이용한 수삼 등급판정 알고리즘에 관한 연구 (A Study on a Ginseng Grade Decision Making Algorithm Using a Pattern Recognition Method)

  • 정석훈;고국원;강제용;장수원;이상준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권7호
    • /
    • pp.327-332
    • /
    • 2016
  • 본 연구는 비 정형 농산물 중 6년근 수삼의 자동 등급 분류하기 위한 선행연구로, 이를 위해 4방향에서 이미지 취득이 가능한 수삼 영상 측정기를 제작 하였으며 총 245 수삼 개체에 대해서 영상을 취득하였다. 취득된 영상의 각 수삼 개체마다 12개의 파라미터를 추출하였으며, KGC 인삼공사의 수삼등급 분류 기준과 각 등급별 평균 파라미터의 분포를 조사하여 최종 4개 파라미터를 선정하였다. 패턴인식 분류기는 Support Vector Machine을 사용하였으며 공용 소프트웨어인 OpenCV Library를 사용하여 k-Class 분류기를 설계하였다. 각 등급별 학습 데이터 수를 10, 15, 20으로 조정하여 등급별 인식률, 본인 거부율, 타인 인식율을 조사하였으며, 학습데이터 수가 10개일 때 1등급 인식률 94%, 2등급 인식률 98%, 3등급 인식률 90%로 가장 높은 인식 성능을 보였다.

유전자 알고리듬을 이용한 CDHMM의 최적화 (An Optimization method of CDHMM using Genetic Algorithms)

  • 백창흠
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 1호
    • /
    • pp.71-74
    • /
    • 1998
  • HMM (hidden Markov model)을 이용한 음성인식은 현재 가장 널리 쓰여지고 있는 방법으로, 이 중 CDHMM (continuous observation density HMM)은 상태에서 관측심볼확률을 연속확률밀도를 사용하여 표현한다. 본 논문에서는 가우스 혼합밀도함수를 사용하는 CDHMM의 상태천이확률과, 관측심볼확률을 표현하기 위한 인자인 평균벡터, 공분산 행렬, 가지하중값을 유전자 알고리듬을 사용하여 최적화하는 방법을 제안하였다. 유전자 알고리듬은 매개변수 최적화문제에 대하여 자연의 진화원리를 모방한 알고리듬으로, 염색체 형태로 표현된 개체군 (population) 중에서 환경에 대한 적합도 (fitness)가 높은 개체가 높은 확률로 살아남아 재생 (reproduction)하게 되며, 교배 (crossover)와 돌연변이 (mutation) 연산 후에 다음 세대 개체군을 형성하게 되고, 이러한 과정을 반복하면서 최적의 개체를 구하게 된다. 본 논문에서는 상태천이확률, 평균벡터, 공분산행렬, 가지하중값을 부동소수점수 (floating point number)의 유전자형으로 표현하여 유전자 알고리듬을 수행하였다. 유전자 알고리듬은 복잡한 탐색공간에서 최적의 해를 찾는데 효과적으로 적용되었다.

  • PDF

강화학습을 이용한 다개체 시스템의 협조행동 구현 (Cooperative Behavior Using Reinforcement Learning for the Multi-Agent system)

  • 이창길;김민수;이승환;오학준;정찬수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.428-430
    • /
    • 2001
  • 다수의 자율이동로봇으로 구성되는 다개체 시스템에서의 협조행동을 위해서 각 개체는 주변환경의 인식뿐만 아니라 환경변화에 적응할 수 있는 추론능력이 요구된다. 이에 본 논문에서는 강화학습을 이용하여 동적으로 변화하는 환경 하에서 개체들이 스스로 학습하고 대처할 수 있는 협조행동 방법을 제시한다. 제안한 방법을 먹이와 포식자 문제에 적용하여 포식자 로봇간의 협조행동을 구현하였다. 여러 대로 구성된 포식자 로봇은 회피가 목적인 먹이로봇을 추적하여 포획하는 것이 임무이며 포식자 로봇들 간의 협조행동을 위해 각 상태에 따른 최적의 행동방식을 찾는데 강화학습을 이용한다.

  • PDF