• 제목/요약/키워드: 개질수소 연료전지

검색결과 132건 처리시간 0.035초

연료전지차량용 연료개질기에 대한 최적연료비교연구 (A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network)

  • 정익환;박찬샘;박성호;나종걸;한종훈
    • Korean Chemical Engineering Research
    • /
    • 제52권6호
    • /
    • pp.720-726
    • /
    • 2014
  • PEMFC(Proton Exchange Membrane Fuel Cell) 차량은 미래 청정수송기관으로 각광받고 있지만 수소스테이션의 인프라부족으로 현재는 수소를 공급해주는 연료개질기를 함께 장착하여 구동하여야 한다. 탄화수소연료로부터 수소를 생산하는 연료개질기를 대상으로 다양한 연구가 진행되어왔는데 기존연구에서는 열적중립 조건의 ATR(Auto-Thermal Reformer) 반응기에 대해 집중적으로 분석하거나 공정최적화부문에서 최대수소생산을 목표로 주로 열효율을 목적함수로 설정하여 평가해 왔다. 본 연구에서는 100 kW PEMFC용 연료개질기를 대상으로 간단한 소형시스템을 얻기 위해 외부 유틸리티가 필요없는 단열열교환망으로 구성된 조건에서 기존 열효율이 아닌 수소효율을 새로이 정의하여 가솔린, LPG, 디젤 각 연료에 대해 최적운전조건을 도출하였다. 가솔린의 경우 기존 비교문헌보다 9.43% 연료절감효과를 얻음으로써 제안한 목적함수의 타당성을 입증하였고, 추가적으로 수소효율 및 열교환량, 열교환면적에 대한 민감도 분석을 실시하였다. 마지막으로 제안한 시스템을 한국시장에 적용할 경우 LPG 연료를 사용하는 연료개질기가 가장 경제적임을 알 수 있었다.

MCFC용 프리컨버터 수증기 개질반응의 수치연구 (NUMERICAL STUDY OF STREAM REFORMING IN PRECONVERTER FOR MCFC)

  • 변도현;손창현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.228-232
    • /
    • 2010
  • In this paper, various operating parameters of stream reforming process from methane in preconverter for MCFC is studied by numerical method. Commercial code is used to simulated the porous catalyst with user subroutine to model three dominant chemical reactions which are Stream Reforming(SR), Water-Gas Shift(WGS), and Direct Stram Reforming(DSR). The hydrogen production is tested with different wall temperature, Gas Hourly Space Velocity(GHSV), and different reactor shapes.

  • PDF

독립형 연료전지 시스템을 위한 가솔린 연료프로세스의 시동 및 운전 (Start-up and operation of Gasoline Fuel Processor for Isolated Fuel Cell System)

  • 지현진;배중면
    • 에너지공학
    • /
    • 제25권1호
    • /
    • pp.76-85
    • /
    • 2016
  • 본 연구에서는 병참연료인 가솔린을 연료프로세서의 연료로 선택하여 광범위한 온도범위에서도 적용가능한 시동 및 제어 전략을 제시하였다. 가솔린 연료프로세서는 시동 초기 단계에서 연소 방식으로 상온상태의 자열개질기 촉매를 라이프온도까지 가열시킨다. 안정적인 가솔린-공기 혼합기체의 점화를 위하여 유동방향 기준 촉매 하단에 글로우 플러그를 설치하였다. 자열개질기가 촉매반응을 시작하면 가솔린 연료프로세서의 개질기는 정상상태까지 POX 모드, 부분 ATR 모드, 완전 ATR 모드 순으로 운전된다. 최종적으로 확립된 시동 및 제어 전략은 상온 및 저온 환경에서 가솔린 연료프로세서의 실제 실험을 통해 타당성을 확인하였다. 그 결과 가솔린 연료프로세서는 상온 및 저온에서 40분 이내에 정상상태에 도달하여 수소 37 ~ 42 vol.%(dry basis), 일산화탄소 0.3 vol.%의 개질가스를 생성할 수 있었다.

황화수소 피독이 고분자전해질 연료전지에 미치는 영향과 회복기법 (H2S Poisoning Effect and Recovery Methods of Polymer Electrolyte Membrane Fuel Cell)

  • 천병도;김준범
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.107-114
    • /
    • 2017
  • 고분자전해질 연료전지(PEMFC: polymer electrolyte membrane fuel cell)는 일산화탄소(CO)나 황화수소($H_2S$)가 포함된 연료가 주입될 경우 성능이 저하된다. 일반적으로 멀캅탄 계열의 부취제가 첨가된 탄화수소를 개질하여 생성된 수소에는 미량의 황화수소가 포함되어 있다. 본 연구에서는 황화수소를 수소에 첨가하여 anode에 주입하였을 경우에 연료전지 성능에 미치는 영향을 파악하고, 3가지 다른 회복방법인 순수 수소 주입법, 전위 순환법과 물 순환법을 적용한 경우의 회복률을 비교하여 보았다. PEMFC의 성능은 전기화학적 방법인 polarization curve, electrochemical impedance spectroscopy (EIS)와 cyclic voltammetry (CV)를 사용하여 분석하였다. 피독에 대한 회복방법인 순수 수소 주입법과 전위 순환법을 사용한 경우에는 회복률이 적었고, 물 순환법을 사용한 경우에는 초기에 대비하여 약 95% 이상 성능이 회복된 것을 확인하였다. 직접적으로 피독에 노출된 anode에 물을 흘린 경우의 성능회복률이 높았으며, cathode에 흘린 경우에도 물의 crossover에 의한 효과로 전위 순환법보다 우수한 회복률을 보였다. 이러한 연구결과로부터 황화수소 피독에 대한 회복기법을 구축함으로서 연료전지의 내구성을 향상시킬 수 있고, 불순물이 미량 함유된 저가 수소의 사용을 가능하게 함으로서 연료전지 보급에도 기여할 수 있을 것이다.

연료전지용 열분해 개질기의 이론해석 및 설계연구 (Theoretical Analysis and Study of Design of Autothermal Reformer for Use in Fuel Cell)

  • 강일환;김형만;최갑승;왕학민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.58-63
    • /
    • 2005
  • As fuel cells approach commercialization, hydrogen production becomes a critical step in the overall energy conversion pathway. Reforming is a process that produces a hydrogen-rich gas from hydrocarbon fuels. Hydrogen production via autothermal reforming (ATR) is particularly attractive for applications that demand a quick start-up and response time in a compact size. However, further research is required to optimize the performance of autothermal reformers and accurate models of reactor performance must be developed and validated. The design includes the requirement of accommodating a wide range of experimental set ups. Factors considered in the design of the reformer are capability to use multiple fuels, ability to vary stoichiometry, precise temperature and pressure control, implementation of enhancement methods, capability to implement variable catalyst positions and catalyst arrangement, ability to monitor and change reactant mixing, and proper implementation of data acquisition. A model of the system was first developed in order to calculate flowrates, heating, space velocity, and other important parameters needed to select the hardware that comprises the reformer. Predicted performance will be compared to actual data once the reformer construction is completed. This comparison will quantify the accuracy of the model and should point to areas where further model development is required. The end result will be a research tool that allows engineers to optimize hydrogen production via autothermal reformation.

  • PDF

고분자 전해질 연료전지 적용을 위한 DME 자열개질가스 내 CO제거 공정 특성 연구 (Experiment of CO Cleaning Process in DME Autothermal Reformate Gas for PEMFC Application)

  • 최승현;배중면
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.474-480
    • /
    • 2011
  • Hydrocarbon is required to be converted to pure hydrogen without carbon monooxide (CO) for polymer exchange membran fuel cell (PEMFC) applications. In this paper, CO cleaning processes as the downstream of Dimethyl ehter (DME) autothermal reforming process were performed in micro-reactors. Our study suggested two kinds of water gas shift (WGS) reaction process: High Temperature shift (HTS) - Low Temperature shift (LTS), Middle temperature shift (MTS). Firstly, using perovskite catalyst for MTS was decreased effieiciency since methanation. Using HTS-LTS the CO concentration was decreased about 2% ($N_2$ & $H_2O$ free) with the reaction temperature of $420^{\circ}C$ and $235^{\circ}C$ for HTS and LTS, respectively. As the final stage of CO cleaning process, preferential oxidation (PROX) was applied. The amount of additional oxygen need 2 times of stoichiometric at $65^{\circ}C$. The total conversion reforming efficiency of 75% was gained.

연료전지에의 적용을 위한 혐기성 소화가스의 정제, 고질화 및 메탄개질 기술 (Process Technologies of Reforming, Upgrading and Purification of Anaerobic Digestion Gas for Fuel Cells)

  • 배민수;이종연;이종규
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.135-143
    • /
    • 2016
  • Biogas is a renewable fuel from anaerobic digestion of organic matters such as sewage sludge, manure and food waste. Raw biogas consists mainly of methane, carbon dioxide, hydrogen sulfide, and water. Biogas may also contain other impurities such as siloxanes, halogenated hydrocarbons, aromatic hydrocarbons. Efficient power technologies such as fuel cell demand ultra-low concentration of containments in the biogas feed, imposing stringent requirements on fuel purification technology. Biogas is upgraded from pressure swing adsorption after biogas purification process which consists of water, $H_2S$ and siloxane removal. A polymer electrolyte membrane fuel cell power plant is designed to operate on reformate produced from upgraded biogas by steam reformer.

수소생산을 위한 자열개질기 작동조건의 수치해석 연구 (Numerical study on operating parameters of autothermal reformer for hydrogen production)

  • 박준근;이신구;임성광;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.507-510
    • /
    • 2008
  • Characteristics of an autothermal reformer at various operating parameters have been studied in this paper. Numerical method has been used, and simulation model has been developed for the analysis. Full Combustion reaction, Steam Reforming(SR) reaction, Water-Gas Shift(WGS) reaction, and Direct Steam Reforming(DSR) reaction are assumed as dominant chemical reactions in the autothermal reformer. Simulation results are compared with experimental results for code validation. Operating parameters of the autothermal reformer are inlet temperature, Oxygen to Carbon Ratio(OCR), Steam to Carbon Ratio(SCR), and Gas Hourly Space Veolcity(GHSV). SR reaction rate decreases with low inlet temperature. If OCR is increased, $H_2$ yield is increased but optimal point is suggested. WGS reaction is activated with high SCR. When GHSV is increased, reforming efficiency is increased but pressure drop may decrease the system efficiency.

  • PDF