• Title/Summary/Keyword: 개인키 파일

Search Result 39, Processing Time 0.036 seconds

Management Method to Secure Private Key of PKI using One Time Password (OTP를 이용한 PKI 기반의 개인키 파일의 안전한 관리 방안)

  • Kim, Seon-Joo;Joe, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.12
    • /
    • pp.565-573
    • /
    • 2014
  • We have various e-commerce like on-line banking, stock trading, shopping using a PC or SmartPhone. In e-commerce, two parties use the certificate for identification and non-repudiation but, the attack on the certificate user steadily has been increasing since 2005. The most of hacking is stealing the public certificate and private key files. After hacking, the stolen public certificate and private key file is used on e-commerce to fraud. Generally, the private key file is encrypted and saved only with the user's password, and an encrypted private key file can be used after decrypted with user password. If a password is exposed to hackers, hacker decrypt the encrypted private key file, and uses it. For this reason, the hacker attacks user equipment in a various way like installing Trojan's horse to take over the user's certificate and private key file. In this paper, I propose the management method to secure private key of PKI using One Time Password certification technique. As a result, even if the encrypted private key file is exposed outside, the user's private key is kept safely.

Management Method for Private Key File of PKI using Container ID of USB memory (USB 메모리의 컨테이너ID를 이용한 PKI 기반의 개인키 파일의 안전한 관리 방안)

  • Kim, Seon-Joo;Joe, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.10
    • /
    • pp.607-615
    • /
    • 2015
  • Mosts user of internet and smart phone has certificate, and uses it when money transfer, stock trading, on-line shopping, etc. Mosts user stores certificate in a hard disk drive of PC, or the external storage medium. In particular, the certification agencies are encouraged for user to store certificate in external storage media such as USB memory rather than a hard disk drive. User think that the external storage medium is safe, but when it is connect to a PC, certificate may be copied easily, and can be exposed to hackers through malware or pharming site. Moreover, if a hacker knows the user's password, he can use user's certificate without restrictions. In this paper, we suggest secure management scheme of the private key file using a password of the encrypted private key file, and a USB Memory's hardware information. The private key file is protected safely even if the encrypted private key file is copied or exposed by a hacker. Also, if the password of the private key file is exposed, USB Memory's container ID, additional authentication factor keeps the private key file safe. Therefore, suggested scheme can improve the security of the external storage media for certificate.

Private Key Management Scheme Using Secret Sharing and Steganography (비밀 분산 및 스테가노그래피를 이용한 개인 키 보관 기법)

  • Lee, Jaeheung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.35-41
    • /
    • 2017
  • This paper introduces a new method for storing a private key. This method can be achieved by dividing the private key into "n" pieces by a (k, n) secret sharing method, and then storing each piece into photo files utilizing a steganography method. In this way, a user can restore a private key as long as he can remember the locations of "k" photos among the entire photo files. Attackers, meanwhile, will find it extremely difficult to extract the private key if a user has hidden the pieces of the private key into numerous photo files stored in the system. It also provides a high degree of user convenience, as the user can restore the private key from his memory of k positions among n photo files. Coupled with this, a certain level of security can be guaranteed because the attacker cannot restore a private key, even if he knows k-1 photo file locations.

Secure Management Method for Private Key using Smartphon's Information (스마트폰 고유정보를 이용한 안전한 개인키 관리 방안)

  • Kim, Seon-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.90-96
    • /
    • 2016
  • The 3390 million people, around 83% of the adult population in Korea use smartphone. Although the safety problem of the certificate has been occurred continuously, most of these users use the certificate. These safety issues as a solution to 'The owner of a mobile phone using SMS authentication technology', 'Biometric authentication', etc are being proposed. but, a secure and reliable authentication scheme has not been proposed for replace the certificate yet. and there are many attacks to steal the certificate and private key. For these reasons, security experts recommend to store the certificate and private key on usb flash drive, security tokens, smartphone. but smartphones are easily infected malware, an attacker can steal certificate and private key by malicious code. If an attacker snatchs the certificate, the private key file, and the password for the private key password, he can always act as valid user. In this paper, we proposed a safe way to keep the private key on smartphone using smartphone's unique information and user password. If an attacker knows the user password, the certificate and the private key, he can not know the smart phone's unique information, so it is impossible to use the encrypted private key. Therefore smartphone user use IT service safely.

The Secure Key Store to prevent leakage accident of a Private Key and a Certificate (인증서와 개인키 유출 방지를 위한 보안키 저장소 Secure Key Store)

  • Park, Young-Jin;Kim, Seon-Jong;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • In Korea, the Public Key Infrastructure (PKI) has been introduced. For secure information transmission and identification, the electronic signature authorization system of a certificate-based is built, and then the service provide.The certificate is stored in location what users can easily access and copy. Thus, there is a risk that can be stolen by malware or web account hacking. In addition, private key passwords can be exposed by the logging tool, after keyboard security features are disabled. Each of these security weaknesses is a potential conduit for identity theft, property/asset theft, and theft of the actual certificates. The present study proposes a method to prevent the private key file access illegally. When a certificate is stored, the private key is encrypted by the dependent element of the device, and it is stored securely. If private key leakage occurs, the retrieved key could not be used on other devices.

Copyright Protection of Software using Public Key Infrastructure (공개키 기반 구조를 이용한 소프트웨어의 저작권 보호)

  • 이병천;임신영;김광조
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1998.12a
    • /
    • pp.33-48
    • /
    • 1998
  • 이 논문에서는 소프트웨어의 저작권을 보호하기 위한 방법으로서 공개키 기반 구조(Public Key Infrastructure, PKI)와 사용자 의존적인 소프트웨어(User Dependent Software, UDS)의 개념을 이용하는 새로운 방법을 제안한다. 공개키 인증서(Certificate)는 개인의 ID와 개인이 사용할 공개키를 묶어서 인증기관이 서명한 문서로서 개인의 사회적 신분을 나타내는 문서라고 볼 수 있다. 사용자 의존적인 소프트웨어란 사용자의 공개키로 암호화한 정보를 포함하여 컴파일되는 사용자 고유의 소프트웨어 컴포넌트이다. 사용자가 소프트웨어를 이용하기 위해서는 개인키를 제시하여 암호화된 정보를 복호화 할 수 있음을 증명해야 한다. 공개키 기반 구조를 이용하는 이러한 구조의 소프트웨어를 이용하면 사용자는 자신의 공개키 인증서와 개인키에 대한 사회적 책임하에 소프트웨어를 정당하게 사용하게 됨으로써 불법 복제가 어렵게 되고 소프트웨어의 저작권을 근본적으로 보호할 수 있게 된다. 이러한 조건에서라면 소프트웨어의 온라인 판매에 이은 온라인 배달도 가능해져서 사회적으로 많은 물류 비용을 절감할 수 있을 것으로 기대된다.

  • PDF

Design and Analysis of Technical Management System of Personal Information Security using Web Crawer (웹 크롤러를 이용한 개인정보보호의 기술적 관리 체계 설계와 해석)

  • Park, In-pyo;Jeon, Sang-june;Kim, Jeong-ho
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.69-77
    • /
    • 2018
  • In the case of personal information files containing personal information, there is insufficient awareness of personal information protection in end-point areas such as personal computers, smart terminals, and personal storage devices. In this study, we use Diffie-Hellman method to securely retrieve personal information files generated by web crawler. We designed SEED and ARIA using hybrid slicing to protect against attack on personal information file. The encryption performance of the personal information file collected by the Web crawling method is compared with the encryption decryption rate according to the key generation and the encryption decryption sharing according to the user key level. The simulation was performed on the personal information file delivered to the external agency transmission process. As a result, we compared the performance of existing methods and found that the detection rate is improved by 4.64 times and the information protection rate is improved by 18.3%.

The Recovery of the Deleted Certificate and the Detection of the Private-Key Encryption Password (삭제된 공인인증서의 복구 및 개인키 암호화 패스워드의 검출)

  • Choi, Youn-Sung;Lee, Young-Gyo;Lee, Yun-Ho;Park, Sang-Joon;Yang, Hyung-Kyu;Kim, Seung-Joo;Won, Dong-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.1
    • /
    • pp.41-55
    • /
    • 2007
  • The certificate is used to confirm and prove the user's identity in online finance and stocks business. A user's public key is stored in the certificate(for e.g., SignCert.der) and the private key, corresponding to public key, is stored in the private key file(for e.g., SignPri.key) after encryption using the password that he/she created for security. In this paper, we show that the certificate, deleted by the commercial certificate software, can be recovered without limitation using the commercial forensic tools. In addition, we explain the problem that the private key encryption password can be detected using the SignCert.der and the SignPri.key in off-line and propose the countermeasure about the problem.

A Method for Detection of Private Key Compromise (서명용 개인키 노출 탐지 기법)

  • Park, Moon-Chan;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.5
    • /
    • pp.781-793
    • /
    • 2014
  • A Public Key Infrastructure (PKI) is security standards to manage and use public key cryptosystem. A PKI is used to provide digital signature, authentication, public key encryption functionality on insecure channel, such as E-banking and E-commerce on Internet. A soft-token private key in PKI is leaked easily because it is stored in a file at standardized location. Also it is vulnerable to a brute-force password attack as is protected by password-based encryption. In this paper, we proposed a new method that detects private key compromise and is probabilistically secure against a brute-force password attack though soft-token private key is leaked. The main idea of the proposed method is to use a genuine signature key pair and (n-1) fake signature key pairs to make an attacker difficult to generate a valid signature with probability 1/n even if the attacker found the correct password. The proposed method provides detection and notification functionality when an attacker make an attempt at authentication, and enhances the security of soft-token private key without the additional cost of construction of infrastructure thereby extending the function of the existing PKI and SSL/TLS.

On Research of Certificates Management on Mobile Device (모바일 기기를 이용한 인증서 관리 연구)

  • Nam, Yong-su;Kim, Tae Yong;Jang, Won Tae;Lee, Hun Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.359-362
    • /
    • 2009
  • Qualified certificates in online financial and security transaction area are currently used for authentication of the user. The authorized user's public key certificates are stored in binary; the private key corresponding to the user's public key certificates is encrypted by the user password, and then is stored in a file. But the present management system to access the public certificates in local has some problems. In this study, we propose that the mobile public certificate management application to avoid the exist problems.

  • PDF