• 제목/요약/키워드: 개인추천

검색결과 840건 처리시간 0.027초

디지털 TV에서 시멘틱 환경의 유헬스 서비스를 위한 나이브 베이지안 필터링 기반 개인화 서비스 추천 방법 (Semantics Environment for U-health Service driven Naive Bayesian Filtering for Personalized Service Recommendation Method in Digital TV)

  • 김재권;이영호;김종훈;박동균;강운구
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권8호
    • /
    • pp.81-90
    • /
    • 2012
  • 디지털 TV에서 시멘틱 환경의 유헬스 개인화 서비스 추천은 개인의 신체조건, 질병, 건강상태를 평가해서 이루어져야 한다. 기존의 시멘틱 환경의 유헬스 개인화 추천 방법은 온톨로지에 의존하여 의미 분석으로 추천을 하기 때문에 사용자 만족도가 떨어진다. 이에 본 논문에서는 디지털 TV에서 시멘틱 환경의 유헬스 서비스를 위한 나이브 베이지안 필터링 기반 개인화 서비스 추천 방법을 제안한다. 제안하는 방법은 온톨로지를 이용하여 상황데이터를 추론하여 트렌젝션을 저장 하고, 선호도 정보를 이용한 나이브 베이지안 필터링 기법을 사용하여 온톨로지로부터 생성된 트렌젝션과 사용자 선호도 정보를 이용하여 추론하여 서비스를 제공한다. 나이브 베이지안 필터링 기반으로 추론된 서비스는 기존의 필터링 방법 보다 콘텐츠 추천의 높은 정확도와 재현율을 보인다.

IoT 기반의 융합 맞춤형 식단추천시스템 프레임워크 (A Framework for IoT-Based Convergence Personalized Menu Recommendation System)

  • 조영희
    • 한국융합학회논문지
    • /
    • 제5권4호
    • /
    • pp.147-153
    • /
    • 2014
  • 개인 식단을 작성하기 위해서는 많은 고려 사항들이 있다. 개인 식단은 질병에 대한 식이요법, 체중에 따른 다이어트 등에 따라 다르다. 또한 음식의 선호도와 계절, 날씨, 기분에 따라 선택하는 식단이 달라진다. 개인은 건강관리를 위해 영양상태의 균형을 바로잡는 식단 추천을 기대한다. 본 논문에서는 이 같은 요구를 충족시키기 위하여 개인 맞춤형 식단추천시스템 구축 프레임워크를 제안한다. 식단을 추천하기 위해서는 시스템은 개인의 신체상황, 식품 재료 상황, 환경 상황, 심리 및 감정 상황 등의 정보를 입력으로 받고, 다른 외부의 응용시스템으로부터 생성된 식단 작성 관련 온톨로지를 이용해 추론함으로써 식단 추천 서비스를 제공할 수 있다. 이 같은 서비스를 제공하기 위해서는 사물인터넷(IoT) 환경이 토대가 되어야 한다. 따라서 본 논문은 oneM2M 공통 서비스 플랫폼을 갖고 있는 IoT 표준화 환경에서의 개인 맞춤형 식단추천시스템 프레임워크를 제안한다.

과학기술정보 서비스 플랫폼에서의 빅데이터 분석을 통한 개인화 추천서비스 설계 (Personal Recommendation Service Design Through Big Data Analysis on Science Technology Information Service Platform)

  • 김도균
    • 한국비블리아학회지
    • /
    • 제28권4호
    • /
    • pp.501-518
    • /
    • 2017
  • 연구자들에게 지식을 습득하여 연구 활동에 도입하는데 걸리는 소요시간을 단축하는 것은 연구생산성 향상에 필수적인 요소라고 할 수 있다. 본 연구의 목적은 한민족과학기술자네트워크(KOSEN) 사용자들의 정보 이용 패턴을 군집화하고 그룹화 된 사용자들에게 맞는 개인화 추천서비스 알고리즘의 최적화 방안을 제안하는 것이다. 사용자들의 연구활동과 이용정보에 기반하여 적합한 서비스와 콘텐츠를 식별한 후 Spark 기반의 빅데이터 분석 기술을 적용하여 개인화 추천 알고리즘을 도출하였다. 개인화 추천 알고리즘은 사용자의 정보검색에 소요되는 시간을 절약하고 적합한 정보를 찾아내는데 도움을 줄 수 있다.

다중 언어를 지원하는 개인화된 TV 프로그램 및 광고 추천 서비스를 위한 시스템 구조 설계 (Design of Systems Architecture for Personalized TV Program and Advertisement Recommendation Services with Multilingualism)

  • 최은정;김효민;박성수;안세열;구명완
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2009년도 제21회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.116-120
    • /
    • 2009
  • 최근 IPTV 상용화와 디지털 방송 본격화는 사용자에게 다양한 방송 프로그램을 제공한다는 장점도 있지만, 동시에 수많은 프로그램을 탐색하여 선별해야 하는 부담을 주고 있다. 이러한 불편함을 해소하고자 최근에는 사용자 선호도와 방송 프로그램 정보를 이용하여 사용자 취향에 맞는 프로그램을 자동으로 추천하는 서비스의 요구가 증대되고 있다. 또한 궁극적으로 방송 서비스가 '개인화'와 '개방화'의 형태로 진행되고 있다는 점을 감안하면, 추천 서비스는 TV 프로그램 뿐만 아니라 광고도 포함해야 하며, 다중 언어를 지원하는 형태로 발전되어야 한다. 본 논문에서는 다중 언어를 지원하는 개인화된 TV 프로그램 및 광고 추천 서비스를 위한 하나의 시스템을 제안한다. 우리는 먼저 사용자 시나리오를 작성하고, 기능 요구사항들을 분석하여 시스템 구조를 설계한다. 그리고 다중 언어를 지원하는 시스템에서의 한글 처리 방법도 간단히 설명한다. 본 연구는 현재 유럽 공동기술 개발 사업 과제의 일환으로 진행되고 있어, 여기에서는 현 시점의 결과물인 시나리오, 시스템 구조 설계, 한글 처리까지 소개하고 있다.

  • PDF

다기준 의사결정 방법을 고려한 베이지안 네트워크 기반 음악 추천 시스템 (Bayesian network based Music Recommendation System considering Multi-Criteria Decision Making)

  • 김남국;이상용
    • 디지털융복합연구
    • /
    • 제11권3호
    • /
    • pp.345-352
    • /
    • 2013
  • 최근 스마트 기기 사용자의 증가에 따라 모바일 음악에 대한 수요와 생산이 꾸준히 증가하고 있다. 이에 따라 대중화된 음악의 폭이 넓어지면서 사용자가 선호하는 음악에 대한 선택의 기준 또한 매우 다양해지고 복잡해지는 추세이다. 이러한 이유로 모바일 환경에서 사용자 개인이 선호하는 음악을 정교하게 추천하기 위한 지능적 음악 추천 기법에 대한 연구가 활발히 진행되고 있다. 그러나 기존의 음악 추천시스템은 청취로그를 이용한 단순 추천 방법을 사용하고 있어 사용자의 선호도를 제대로 고려하지 못하고 있다. 본 논문에서는 사용자의 선호도를 반영한 개인화된 적응형 음악 추천 시스템을 제안한다. 본 시스템에서는 계층적 의사결정 도구인 AHP를 이용하여 사용자의 개개인의 음악적 선호도를 반영한 음악 추천이 가능토록 하였으며, 베이지안 네트워크 기반의 사용자 피드백 통해 지속적인 사용자의 음악적 선호도를 반영하도록 하였다. 본 시스템의 성능을 평가하기 위해 12명의 실험자를 각각 3명씩 4그룹으로 나누어 실험하였으며 그 결과 87.5%의 추천 만족도를 얻었다.

Web 상에서 개인화된 상품 추천을 위한 Hybrid 추천 시스템에 관한 연구

  • 손창환;김기수
    • 한국정보시스템학회:학술대회논문집
    • /
    • 한국정보시스템학회 2005년도 춘계학술대회 발표 논문집
    • /
    • pp.393-408
    • /
    • 2005
  • 인터넷의 성장은 고객에게 많은 혜택을 주었지만, 방대한 양의 정보는 오히려 장시간의 상품 탐색과 제품 선택을 어렵게 만들었다. 이에 따라, 정보의 양을 줄여 줄 수 있는 서비스를 고객들은 요구를 하기 시작하였고, 이에 따라 다양한 방법들이 고객에게 제시 되어졌다. 제시되어진 방법 중의 하나가 개인화 추천 시스템이다. 추천 시스템은 고객의 취향과 관심에 적합한 상품을 추천 해 주는 서비스로서 상품 검색 노력을 줄여 주고, 고객의 취향에 적합한 제품을 제시 해 줌으로써 고객충성도 제고에도 많은 도움을 주고 있다. 이러한 추천 시스템에서 가장 많이 사용되어지고 있는 기법은 협업 필터링이다. 협업 필터링은 협업에서도유용한 기법으로 인정을 받았다. 하지만 희박성과 확장성이라는 문제점으로 인해 추천의 정확도가 다소 떨어진다는 것이 단점이다. 본 연구에서는 이러한 단점을 극복할 수 있는 방법으로써 Hybrid 협업 필터링 기법을제시하고, 이를 토대로 추천 기법이 혼합되어진 Hybrid 추천 시스템에 대한 개념을 제시하고자 한다.

  • PDF

개인 성향과 협업필터링 기반 영화 추천 시스템 성능 향상 (Performance Improvement of a Movie Recommendation System Based on the Personal Propensity and Collaborative Filtering)

  • 장슬기;박두순;정영식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.1113-1114
    • /
    • 2010
  • 협업필터링 방법은 가장 일반적으로 사용되는 추천 시스템이다. 그런데 협업필터링 방법은 희박성, 확장성 그리고 투명성 등의 문제점을 가지고 있다. 본 논문에서는 개인 성향 중 장르, 성격, 나이, 성별, 혈액형, 지역 등을 고려하여 희박성 문제를 개선한 영화 추천 시스템을 제시한다. 즉, 개인 성향 정보에 따라 가장 성향이 비슷한 사용자들을 분류하고, 그 분류된 정보를 이용하여 개인에게 가장 적합한 개선된 영화추천 기법을 제안한다.

R에서 협업필터링과 K-NN을 이용한 개인 맞춤형 운동 추천 시스템 (Personalized Exercise Recommendation System using Collaborative Filtering and K-NN in R System)

  • 백수빈;박두순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.359-361
    • /
    • 2022
  • 최근 질적인 삶의 중요성과 건강에 대한 필요성이 향상되면서 운동의 중요성에 대한 국민의 인지도가 증가했다. 체력적인 효과 심리적인 효과 면역효과 등 운동이 주는 많은 긍정적인 영향들로 인해 최근 건강관리에 대해 사람들의 관심이 많이 증가했으나 자신에게 알맞는 운동 방법을 알지 못해 정작 운동을 실천하는 수는 그 수의 절반뿐이다. 따라서 개인의 신체 알맞는 운동을 추천해 줄 수 있는 추천 시스템이 필요하다. 본 논문에서는 신장, 몸무게, 나이, 주당 운동 횟수, 성별과 같은 개인화 요소를 이용한 협업 필터링과 k-nn 을 R 시스템을 사용하여 사용자 개인 맞춤형 운동 추천 시스템을 제안한다.

시맨틱 웹에서 개인화 프로파일을 이용한 콘텐츠 추천 검색 시스템 (Contents Recommendation Search System using Personalized Profile on Semantic Web)

  • 송창우;김종훈;정경용;류중경;이정현
    • 한국콘텐츠학회논문지
    • /
    • 제8권1호
    • /
    • pp.318-327
    • /
    • 2008
  • 정보기술의 발전과 인터넷 사용의 증가로 이용가능한 정보들의 양이 폭발적으로 증가한다. 콘텐츠 추천 시스템은 사용자가 원하지 않는 정보를 필터링하고 유용한 정보를 추천하는 서비스를 제공한다. 기존의 추천 시스템은 데이터마이닝 기법으로 웹 접속 기록 및 유형과 사용자가 요구하는 정보를 서비스 제공자 측면에서 분석하여 콘텐츠를 제공한다. 사용자의 선호도와 생활패턴 등의 사용자 측면에서의 정보들의 표현이 어려웠기 때문에 제한된 서비스를 제공할 수 밖에 없었다. 시맨틱 웹 기술은 이미지, 문서 등의 모든 객체를 대상으로 목적에 맞는 정보를 수집, 가공, 응용할 수 있도록 데이터 간에 잘 정의된 의미 있는 관계를 만들 수 있다. 본 논문에서는 시맨틱 웹 환경에서 개인화 프로파일을 동적으로 갱신하여 반영할 수 있는 콘텐츠 추천 검색 시스템을 제안한다. 개인화 프로파일은 프로파일의 특징을 담고 있는 컬렉터, 다양한 컬렉터들로부터 프로파일을 수집하는 수집기, 프로파일 특성에 기반한 고유의 프로파일 컬렉터를 해석하는 해석기로 구성된다. 개인화 모듈은 콘텐츠 추천 서버에서 개인화 프로파일과 주기적으로 동기화할 수 있도록 도와준다. 추천 콘텐츠로 음악을 선택하여 서비스 시나리오에 따라 개인화 프로파일이 콘텐츠 추천 서버에 전달되어 사용자의 선호도와 생활패턴이 반영된 추천리스트를 제공하는지 실험한다.

개인 리뷰를 통한 영화추천 시스템 (A Movie Recommendation System using Individual Review)

  • 김채린;박주현;두추월;박두순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.1081-1084
    • /
    • 2014
  • 최근 들어, 많은 추천시스템들이 연구 되고 있으며, 대부분은 개인 맞춤형 추천 시스템이 연구되고 있다. 기존의 영화추천시스템에서는 희박성의 문제가 제기된다. 본 논문에서는 희박성에 대해 보안하고자, 개인리뷰에 대한 가중치를 활용한다. 그 결과 사용자에게 정보의 제공에 대해 효율성을 높이고, 사용자마다 영화에 대한 리뷰에 따른 감정 및 사용자의 정보들을 반영한 영화추천시스템을 설계 및 구현한다.