Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.245-247
/
2017
기존 콘텐츠를 활용 및 조합하여 새로운 콘텐츠를 제작하는 개인 사용자가 늘어나고 있는 추세다. 사용자가 원하는 내용이 담긴 영상 콘텐츠를 활용하기 위해서는 이를 지원하는 영상 검색 시스템이 필요하다. 하지만 기존의 영상 검색 시스템은 키워드 매칭을 기반으로 하고 있기 때문에 사용자가 원하는 영상을 찾지 못하는 경우가 많다. 본 연구에서는 이러한 문제를 해결하기 위해 사용자의 검색 의도를 보다 정확하게 표현할 수 있는 질의어 확장 방법을 제시하고 있다. 제시하는 방법은 도메인 온톨로지와 워드 임베딩 결과를 이용하여 질의어와 의미적으로 밀접히 관련된 단어를 추가하고 확장된 질의어를 이용하여 검색을 수행하게 된다. 이를 통해 사용자는 만족할만한 검색 결과를 얻을 수 있게 된다. 구현한 시스템을 이용하여 질의어가 확장되는 과정을 보임으로써 본 연구에서 제시하고 있는 방법에 대한 평가를 수행하였다.
위치 정보 제공 시스템은 이동성이 있는 물건 또는 개인이 특정한 시간에 존재하거나 존재하였던 장소에 관한 정보를 제공하는 시스템이다. 시각 장애인들은 인도, 교차로, 계단, 엘리베이터 등 위협요소가 있는 특정 장소 등의 환경 문제로 사회의 참여가 어렵다. 이에 거리 곳곳에 설치된 RFID Tag의 위치정보를 다양한 통신망을 활용하여 중앙 서버의 MAP 데이터에 연계 시켜 시각 장애인에게 음성 및 경고 알림 진동으로 길을 안내해주는 위치 정보 제공 시스템을 설계하였다.
최근 텔레매틱스는 유비쿼터스 및 컨버전스라는 기술 패러다임의 특징을 대변하는 서비스로 인식되면서 크게 주목받고 있는 서비스이다 즉, DMB(Digital Multimedia Broadcasting), IMT-2000, 휴대인터넷서비스 및 개인 휴대통신 단말기의 발전, 지능형 교통시스템의 구축 등 기술 패러다임의 변화와 방송ㆍ통신의 융합, 새로운 서비스, 다양한 관련 산업의 컨버전스 등을 기반으로 궁극적으로 유비쿼터스 시대를 구체화할 최초의 서비스로 예상되고 있다.(중략)
Proceedings of the Korea Database Society Conference
/
2000.11a
/
pp.173-185
/
2000
개인용 컴퓨터와 인터넷의 폭발적인 보급과 발전은 전자상거래와 E-business로 요약 되는 지식과 정보에 기반을 둔 비즈니스의 변화, 정보 공유를 통한 사이버 세계의 활성화, 언론이나 방송 등을 대체할 새로운 미디어로서의 역할 등 경제적, 문화적, 정치적 관점에서 인간의 삶에 혁신적 변화를 가져왔다. (중략)
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.11a
/
pp.220-221
/
2011
방송 및 통신망에서 방송 및 멀티캐스트 데이터를 효율적으로 전송하기 위해 적응변조 방식을 통해 그룹 내의 사용자 개개인의 요구 성능(QoS)을 보장해주는 기술이 고려되고 있으며, 이를 위해서는 피드백 부담을 낮출 수 있는 기술 개발이 필수적이다. 본 논문에서는 멀티캐스트 그룹 내 모든 사용자가 공유하는 1bit 피드백 채널을 사용하여 그룹 내 사용자수에 관계없이 2개 또는 3개의 1bit 피드백채널만을 사용하여 적응변조(Adaptive Modulation and Coding)동작을 하는 방법을 제안하였다. 또한 제안한 방법에 대한 시스템 레벨 모의실험을 수행하여, 사용자별로 피드백 채널을 사용하는 경우와 제안된 방식을 사용하는 경우의 전송 효율을 비교분석 하여 제안된 방식의 실용성을 보였다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.4
/
pp.9-15
/
2023
Existing simple statistics-based recommendation systems rely solely on students' course enrollment history data, making it difficult to identify classes that match students' preferences. To address this issue, this study proposes a personalized major subject recommendation system based on deep reinforcement learning (DRL). This system gauges the similarity between students based on structured data, such as the student's department, grade level, and course history. Based on this information, it recommends the most suitable major subjects by comprehensively considering information about each available major subject and evaluations of the student's courses. We confirmed that this DRL-based recommendation system provides useful insights for university students while selecting their major subjects, and our simulation results indicate that it outperforms conventional statistics-based recommendation systems by approximately 20%. In light of these results, we propose a new system that offers personalized subject recommendations by incorporating students' course evaluations. This system is expected to assist students significantly in finding major subjects that align with their preferences and academic goals.
Due to the rapid increase of available contents via the convergence of broadcasting and internet, the efficient access to personally preferred contents has become an important issue. In this paper, for recommendation scheme for TV programs using a collaborative filtering technique is studied. For recommendation of user preferred TV programs, our proposed recommendation scheme consists of offline and online computation. About offline computation, we propose reasoning implicitly each user's preference in TV programs in terms of program contents, genres and channels, and propose clustering users based on each user's preferences in terms of genres and channels by dynamic fuzzy clustering method. After an active user logs in, to recommend TV programs to the user with high accuracy, the online computation includes pulling similar users to an active user by similarity measure based on the standard preference list of active user and filtering-out of the watched TV programs of the similar users, which do not exist in EPG and ranking of the remaining TV programs by proposed rank model. Especially, in this paper, the BM (Best Match) algorithm is extended to make the recommended TV programs be ranked by taking into account user's preferences. The experimental results show that the proposed scheme with the extended BM model yields 62.1% of prediction accuracy in top five recommendations for the TV watching history of 2,441 people.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.12
no.3
/
pp.195-200
/
2012
Smart Phone devices offer convenience for users, but present a new set of security issues due to loss or malicious code. In this paper, a mobile cloud system environment is used with existing smart phones in an attempt to solve the problems in a banking environment. In order to prevent financial damages due to loss or personal information leakage by malicious code, a mobile cloud computing service that provides control and protection of personal information in environment that ensures individual authentication is used. Existing ID / Password with certificate, with the way smart phone dual password authentication scheme using the gyro sensors proposed.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.9
no.3
/
pp.117-122
/
2009
In these days, world economic crisis is getting worse and most of us are having difficulties in handling financial balance. By noticing that credit card is the most important payment method of individuals, we developed e-receipt system, which helps a person easily keep track of credit card spendings by showing purchase and transaction details in real-time. We've used embedded software engineering techniques in developing the e-receipt system. The system we developed here will benefit most of us by preventing over-spending of credit cards and will lead to healthy spending habits.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.07a
/
pp.82-84
/
2011
본 논문에서는 사용자의 개인적 취향에 맞는 음악을 추천할 수 있는 사용자 감성/상황 정보 융합 기반의 협업 필터링의 확장을 이용한 음악추천시스템을 소개한다. 본 논문에서 제안하는 시스템은 확장된 협업 필터링 방식을 사용하여 추천을 해준다. 이를 위해 본 논문에서는 추천의 근거가 되는 감성과 무드를 Thayer 음악 무드 모델을 이용하여 총 12 가지의 감성 정보, 8 cluster 의 무드 정보로 분류했다. 또한 사용자의 상황 정보, 활동 & 날씨 & 시간에 대해서도 분류하였다. 분류된 정보는 음악감상 UI 를 이용하여 사용자 별 감성, 상황 그리고 음원의 무드 정보로 수집이 되었고, 수집된 정보를 기반으로 사용자 감성과 청취 곡 횟수를 퓨전하여 평가치 매트릭스를 만들었으며, 이를 바탕으로 단계적 협업 필터링에 의해 사용자 취향에 맞는 음악을 추천해 주는 방법이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.