• Title/Summary/Keyword: 개선된 퍼지 ART

Search Result 50, Processing Time 0.024 seconds

An Enhanced Fuzzy ART Algorithm for The Identifier Recognition from Shipping Container Image (운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘)

  • 류재욱;김태경;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.365-369
    • /
    • 2002
  • 퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 핀다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 된 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 운송 컨테이너 영상들을 대상으로 실험한 결과, 기존의 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

A Study on the Recognition of Car Plate using an Enhanced Fuzzy ART Algorithm (개선된 퍼지 ART 알고리즘을 이용한 차량 번호판 인식에 관한 연구)

  • 임은경;김광백
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.433-444
    • /
    • 2000
  • The recognition of car plate was investigated by means of the enhanced fuzzy ART algorithm. The morphological information of horizontal and vertical edges was used to extract a plate area from a car image. In addition, the contour tracking algorithm by utilizing the SOFM was applied to extract the specific area which includes characters from an extracted plate area. The extracted characteristic area was recognized by using the enhanced fuzzy ART algorithm. In this study we propose the novel fuzzy ART algorithm different from the conventional fuzzy ART algorithm by the dynamical establishment of the vigilance threshold which shows a tolerance limit of unbalance between voluntary and saved patterns for clustering. The extraction rate obtained by using the morphological information of horizontal and vertical edges showed better results than that from the color information of RGB and HSI. Furthermore, the recognition rate of the enhanced fuzzy ART algorithm was improved much more than that of the conventional fuzzy ART and SOFM algorithms.

  • PDF

An Enhanced Fuzzy ART Algorithm for Effective Image Recognition (효과적인 영상 인식을 위한 개선된 퍼지 ART 알고리즘)

  • Kim, Kwang-Baek;Park, Choong-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.262-267
    • /
    • 2007
  • 퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 된다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 학습률의 설정에 따라 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 본 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 학습률로 설정하여 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 영문 명함에서 추출한 영문자들을 대상으로 실험한 결과, 기존의 ART1과 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

  • PDF

The Passport Recognition by Using Smearing Method and Fuzzy ART Algorithm (스미어링 기법과 퍼지 ART 알고리즘을 이용한 여권 인식)

  • 류재욱;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.37-42
    • /
    • 2002
  • 현행 출입국 관리는 사용자가 여권을 제시하면, 여권을 육안으로 검색하고 수작업으로 정보를 입력하여 여권의 데이터 베이스와 대조하였다. 이러한 종래의 출입국 관리 시스템은 출입국 심사 시간이 길어 출입국자에 불편을 제공하고 출입국 부적격자에 대한 정확한 검색이 이루어지지 않아 체계적으로 관리하기가 어려웠다. 이리한 종래의 문제점을 개선하기 위해 영상 처리와 문자 인식을 이용한 여권 인증 시스템을 제안한다. 된 논문에서는 여권 영상에 대해 소벨 연산자와 스미어링 기법 그리고 윤곽선 추적 알고리즘을 이용하여 사진영역, 코드 영역 및 개별 코드 문자를 추출하고 개별 코드 문자 인식은 기존의 퍼지 ART를 개선하여 적용한다. 다양한 국내 여권 영상에 대해 제안된 여권 인식 방법을 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능을 보였고 개선된 퍼지 ART 알고리즘이 기존의 퍼지 ART 알고리즘보다 클러스터 수가 적게 생성되고 인식률도 향상된 것을 확인하였다

  • PDF

An Enhanced Fuzzy ART Algorithm for The Effective Identifier Recognition From Shipping Container Image (효과적인 운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘)

  • 김광백
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.486-492
    • /
    • 2003
  • The vigilance threshold of conventional fuzzy ART algorithm decide whether to permit the mismatch between any input pattern and stored pattern. If the vigilance threshold was large, despite of little difference among input and stored patterns, the input pattern may be classified to new category. On the other hand, if the vigilance threshold was small, the similarity between two patterns may be accepted in spite of lots of difference and the input pattern are classified to category of the stored pattern. Therefore, the vigilance threshold for the image recognition must be experientially set for the good result. Moreover, it may occur in the fuzzy ART algorithm that the information of stored patterns is lost in the weight-adjusting process and the rate of pattern recognition is dropped. In this paper, I proposed the enhanced fuzzy ART algorithm that supports the dynamical setting of the vigilance threshold using the generalized intersection operator of fuzzy logic and the weight value being adaptively set in proportional to the current weight change and the previous weight by reflecting the frequency of the selection of winner node. For the performance evaluation of the proposed method, we applied to the recognition of container identifiers from shipping container images. The experiment showed that the proposed method produced fewer clusters than conventional ART2 and fuzzy ART algorithm. and had tile higher recognition rate.

ART1-based Fuzzy Supervised Learning Algorithm (ART1 기반 퍼지 지도 학습 알고리즘)

  • Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.479-484
    • /
    • 2005
  • 본 논문에서는 오류 역전파 알고리즘에서 은닉층의 노드 수를 설정하는 문제와 ART1의 경계 변수의 설정에 따른 인식률이 저하되는 문제점을 개선하기 위해 ART1 알고리즘과 퍼지 단층 지도 학습 알고리즘을 결합한 ART1 기반 퍼지 지도 학습 알고리즘을 제안한다. 제안된 알고리즘은 가중치 조정에 승자 뉴런 방식을 도입하여 은닉층에 해당하는 클래스에 영향을 끼친 패턴들의 정보만 저장하게 하여 은닉층 노드로의 책임 분담에 의한 정체 현상이 일어날 가능성을 줄인다. 그리고 학습시간과 학습의 수렴성도 개선한다. 제안된 알고리즘의 학습 성능을 분석하기 위하여 주민등록번호 분류를 대상으로 실험한 결과, 제안된 방법이 기존의 신경망보다 경계 변수나 모멘트에 민감하지 않으며 학습 시간도 적게 소요되고 수렴성도 우수한 성능이 있음을 확인하였다.

  • PDF

Recognition System of Passports by Using Enhanced Fuzzy Neural Networks (개선된 퍼지 신경망을 이용한 여권 인식 시스템)

  • 류재욱;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.155-161
    • /
    • 2003
  • 출입국 관리 절차를 간소화하는 방안의 하나로 퍼지 신경망을 이용한 여권 인식 시스템을 제안한다. 제안된 여권 인식 방법은 소벨 연산자와 수평 스미어링, 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출한다 여권의 문자열 영역은 OCR 문자 서체로 구성되어 있고, 명도 차이가 다양하게 나타난다. 따라서 추출된 문자열 영역을 블록 이진화와 평균 이진화를 각각 수행하고 그 결과들을 AND 비트 연산을 취하여 적응적으로 이진화한다. 이진화된 문자열 영역에 대해서 개별 코드의 문자들을 복원하기 위하여 CDM(Conditional Dilation Morphology) 마스크를 적용한 후, 역 CDM마스크와 HEM(Hit Erosion Morphology)마스크를 적용하여 잡음을 제거한다 잡음이 제거된 문자열 영역에 대해 수직 스미어링을 적용하여 개별 코드의 문자를 추출한다. 추출된 개별 코드의 인식은 퍼지 ART 알고리즘을 개선하여 RBF 네트워크의 중간층으로 적용하는 퍼지 RBF 네트워크와 개선된 퍼지 ART 알고리즘과 지도 학습을 결합한 퍼지 자가 생성 지도 학습 알고리 즘을 각각 제안하여 여권의 개별 코드 인식에 적용한다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상을 대상으로 실험한 결과, 제안된 추출 및 인식 방법이 여권 인식에서 우수한 성능이 있음을 확인하였다.

  • PDF

Recognition of Passport Image Using Removing Noise Branches and Enhanced Fuzzy ART (잡영 가지 제거 알고리즘과 개선된 퍼지 ART를 이용한 여권 코드 인식)

  • Lee, Sang-Soo;Jang, Do-Won;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.377-382
    • /
    • 2005
  • 본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하는 방법을 제안한다. 여권 이미지는 기울어진 상태로 스캔 되어 획득되어질 수도 있으므로 기울기 보정은 문자 분할 및 인식에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 영상에 대한 각도 보정을 수행한다. 여권 코드 추출은 소벨 연산자와 수평 스미어링, 8방향 윤관선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이진화 방법을 적용하여 코드의 문자열 영역을 이진화 한다, 이진화된 문자열 영역에 대해 여권 코드의 인식율을 높이기 위하여 잡영 가지 제거 알고리즘을 적용하여 개별 문자의 잡영을 제거한 후에 개별 코드를 추출하며, CDM 마스크를 적용하여 추출된 개별코드를 복원한다. 추출된 개별코드는 개선된 퍼지 ART 알고리즘을 제안하여 인식에 적용한다. 실제 여권 영상을 대상으로 실험한 결과, CDM 마스크를 이용하여 추출된 개별 코드를 개선된 퍼지 ART 알고리즘을 적용하여 인식한 방법보다 잡영 제거 알고리즘과 CDM 마스크를 적용하여 개선된 퍼지 ART 알고리즘으로 개별 코드를 인식하는 것이 효율적인 것을 확인하였다. 그리고 기존의 퍼지 ART 알고리즘을 이용하여 개별 코드를 인식하는 경우보다 본 논문에서 제안한 개선된 퍼지 ART 알고리즘을 이용하여 개별 코드를 인식하는 경우가 서로 다른 패턴들이 같은 클러스터로 분류되지 않아 인식 성능이 개선되었다.생산하고 있다. 또한 이러한 자료를 바탕으로 지역통계 수요에 즉각 대처할 수 있다. 더 나아가 이와 같은 통계는 전 국민에 대한 패널자료이기 때문에 통계적 활용의 범위가 방대하다. 특히 개인, 가구, 사업체 등 사회 활동의 주체들이 어떻게 변화하는지를 추적할 수 있는 자료를 생산함으로써 다양한 인과적 통계분석을 할 수 있다. 행정자료를 활용한 인구센서스의 이러한 특징은 국가의 교육정책, 노동정책, 복지정책 등 다양한 정책을 정확한 자료를 근거로 수립할 수 있는 기반을 제공한다(Gaasemyr, 1999). 이와 더불어 행정자료 기반의 인구센서스는 비용이 적게 드는 장점이 있다. 예를 들어 덴마크나 핀란드에서는 조사로 자료를 생산하던 때의 1/20 정도 비용으로 행정자료로 인구센서스의 모든 자료를 생산하고 있다. 특히, 최근 모든 행정자료들이 정보통신기술에 의해 데이터베이스 형태로 바뀌고, 인터넷을 근간으로 한 컴퓨터네트워크가 발달함에 따라 각 부처별로 행정을 위해 축적한 자료를 정보통신기술로 연계${cdot}$통합하면 막대한 조사비용을 들이지 않더라도 인구센서스자료를 적은 비용으로 생산할 수 있는 근간이 마련되었다. 이렇듯 행정자료 기반의 인구센서스가 많은 장점을 가졌지만, 그렇다고 모든 국가가 당장 행정자료로 인구센서스를 대체할 수 있는 것은 아니다. 행정자료로 인구센서스통계를 생산하기 위해서는 각 행정부서별로 사용하는 행정자료들을 연계${cdot}$통합할 수 있도록 국가사회전반에 걸쳐 행정 체제가 갖추어져야 하기 때문이다. 특히 모든 국민 개개인에 관한 기본정보, 개인들이 거주하며 생활하는 단위인 개별 주거단위에 관한 정보가 행정부에 등록되어

  • PDF

Nucleus Segmentation and Recognition of Uterine Cervical Pap-Smears using Enhanced Fuzzy ART Algorithm (개선된 퍼지 ART 알고리즘을 이용한 자궁 경부 세포진 핵 분할 및 인식)

  • Kim, Kwang-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.519-524
    • /
    • 2006
  • Segmentation for the region of nucleus in the image of uterine cervical cytodiagnosis is known as the most difficult and important part in the automatic cervical cancer recognition system. In this paper, the region of nucleus is extracted from an image of uterine cervical cytodiagnosis using the fuzzy grey morphology operation. The characteristics of the nucleus are extracted from the analysis of morphemetric features, densitometric features, colormetric features, and textural features based on the detected region of nucleus area. The classification criterion of a nucleus is defined according to the standard categories of the Bethesda system. The enhanced fuzzy ART algorithm is used to the extracted nucleus and the results show that the proposed method is efficient in nucleus recognition and uterine cervical Pap-Smears extraction.

Learning Performance Improvement of Fuzzy RBF Network (퍼지 RBF 네트워크의 학습 성능 개선)

  • Kim Kwang-Baek
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.3
    • /
    • pp.369-376
    • /
    • 2006
  • In this paper, we propose an improved fuzzy RBF network which dynamically adjusts the rate of learning by applying the Delta-bar-Delta algorithm in order to improve the learning performance of fuzzy RBF networks. The proposed learning algorithm, which combines the fuzzy C-Means algorithm with the generalized delta learning method, improves its learning performance by dynamically adjusting the rate of learning. The adjustment of the learning rate is achieved by self-generating middle-layered nodes and by applying the Delta-bar-Delta algorithm to the generalized delta learning method for the learning of middle and output layers. To evaluate the learning performance of the proposed RBF network, we used 40 identifiers extracted from a container image as the training data. Our experimental results show that the proposed method consumes less training time and improves the convergence of teaming, compared to the conventional ART2-based RBF network and fuzzy RBF network.

  • PDF