• Title/Summary/Keyword: 개별 요소법

Search Result 252, Processing Time 0.03 seconds

Comparative Study on Cross-anisotrupic Elasticity of Granular Soils Based on Lab-scale Triaxial Experiment and Discrete Element Analysis (실내 삼축시험과 개별요소법(DEM)을 이용한 사질토 직교 이방 탄성 특성의 미시역학적 비교 분석)

  • Jung, Young-Hoon;Lee, Jae-Hoon;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.59-68
    • /
    • 2007
  • The comparative study using the lab-scale experiment and the discrete element analysis is attempted to analyze the cross-anisotropic elasticity of granular soils. The lab-scale experiment consists of the small stress-controlled triaxial cyclic tests and the bender element tests. In the discrete element analysis the simulations of lab-scale cyclic tests are conducted in the various directions. Good agreement between the experimental data and the simulation on the elastic properties in the axial and shear directions confirms the usefulness of the discrete element method. The comparative analysis of the difference in the experimental data and the simulation of radial cyclic tests shows that the discrete element method can successfully be used to check the reasonable magnitude of each measurement in the experiments.

Effect of Joint Stiffness on the Rock Block Behavior in the Distinct Element Analysis (개별요소해석에서 절리강성이 블록 거동에 미치는 영향)

  • Ryu, Chang-Ha;Choi, Byung-Hee
    • Explosives and Blasting
    • /
    • v.37 no.2
    • /
    • pp.14-21
    • /
    • 2019
  • Distinct element method is a powerful numerical tool for modelling the jointed rock masses. It is also a useful tool for modelling of later stage of blasting requiring large displacement. The distinct element method utilizes a rigid block idea in which the interacting force between distinct elements is calculated from contact displacement as elements penetrate slightly. The properties of joints defined as the boundaries of distinct elements are critical parameters to determine the block behavior, and affect the deformation and failure mode. However, regardless of real joint properties, joint stiffnesses have sometimes been selected without special concern just to prevent elements from penetrating too far into each other in some quasi-static problems. Depending on whether the main interest in the analysis is the prediction of the deformation with high precision, or the prediction of the block behaviour after failure, the input data such as joint stiffness may or may not have a significant effect on the results. The purpose of this study is to provide a sound understanding of the effect of the joint stiffness on the distinct element analysis results, and to help guide the selection of input data.

Coupled Distinct Element and Boundary Element Analysis of Problems Having Infinite or Semi-infinite Boundaries (개별요소와 경계요소 조합에 의한 무한 및 반무한 영역문제의 해석)

  • Huh, Taik Nyung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.81-93
    • /
    • 1992
  • Numerical modeling of problems having infinite and semi-infinite boundaries is studied using a coupled method of distinct elements and boundary elements. The regions which are restricted on stress concentration area of loading points, excavation surface, and geometric discontinuity in the underground structures, are modeled using distinct elements, while the infinite and semi-infinite regions are modeled using linear boundary elements. Linear boundary elements for infinite and semi-infinite region are respectively composed using the Kelvin's and the Melan's solution, respectively. For the completeness, the boundary element method, the distinct element, and the coupled method of distinct elements and boundary elements are studied independently. The coupled method is verified and is applied to underground structures of infinite and semi-infinite regions. Through the comparison of the results, it is concluded that the coupled analysis may be used for discontinuous underground structures in the effective manner.

  • PDF

Application of Discrete Element Method to Evaluate Thermal Conductivity of Backfill Materials for Horizontal Ground Heat Exchanger (수평형 지중열교환기용 되메움재의 열전도도 평가를 위한 개별요소법 적용 연구)

  • Han, Eunseon;Yi, Jihae;Shon, Byonghu;Choi, Hangseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.123.1-123.1
    • /
    • 2010
  • 수평형 지중열교환기의 최적설계를 위해서는 되메움재의 광물특성 및 입자크기, 열전도도(thermal conductivity), 열용량(heat capacity)등과 같은 열적 특성을 파악 하는 것은 중요하다. 수평형 지중 열교환기용 되메움재의 열전도도를 파악하기 위해 비정상 열선법을 적용한 QTM-500을 사용하여 포화도에 따른 천연규사-물-공기 혼합물의 열전도도를 측정하였다. 측정된 열전도도를 개별요소법(Discrete Element Mothod)에 근거한 2차원 수치해석 프로그램인 PFC2D(Particle Flow Code in 2 Dimension)를 이용하여 비교 분석하였다. 수치해석에서는 혼합물의 건조밀도를 일정하게 유지한 상태에서 포화도에 따라 가상의 물 입자 개수를 변화시켰다. 개별요소법을 이용한 열전달 수치해석에서는 입자의 접촉을 통해 발생한 thermal pipe에 의해 열전달이 이루어진다. 이러한 thermal pipe의 열전도도는 접촉된 두 입자의 열전도도와 접촉면의 평균 열전도도를 고려하여 적용하였다.

  • PDF

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part I : Modeling (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part I : 모델링)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.484-495
    • /
    • 2020
  • To numerically simulate the advance of EPB TBM, various type of numerical analysis methods have been adopted including discrete element method (DEM), finite element method (FEM), and finite difference method (FDM). In this paper, an EPB TBM driving model was proposed by using coupled DEM-FDM. In the numerical model, DEM was applied in the TBM excavation area, and contact properties of particles were calibrated by a series of triaxial tests. Since the ground around the excavation area was coupled with FDM, the horizontal stress considering the coefficient of earth pressure at rest could be applied. Also, the number of required particles was reduced and the efficiency of the analysis was increased. The proposed model can control the advance rate and rotational speed of the cutter head and screw conveyor, and derive the torque, thrust force, chamber pressure, and discharging during TBM tunnelling.

Development of 2-D DEM (Discrete Element Method) algorithm to create ballast (2차원 개별요소법을 이용한 도상자갈 생성 알고리즘 개발)

  • Kim Dae-Sang;Lee Seong-Hyeok;Lee Jin-Uk;Hwang Seon-Keun
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.331-336
    • /
    • 2003
  • 본 연구에서는 원형요소를 자동적으로 생성시킬 수 있는 2차원 개별요소법 알고리즘을 개발하였다. 개발된 프로그램으로 다양한 반지름을 갖는 원형요소를 구현할 수 있었고 이를 이용하여 침목하부의 도상자갈을 모델링하였다. 또한 프로그램의 적용성을 확인하기 위하여 중복과 겹침이 없는 원형요소의 자동생성 예제를 개발하였다.

  • PDF

Scour Simulation by Coarse-Grained DEM Coupled with Incompressible SPH (비압축성 SPH와 Coarse-Grained DEM을 활용한 세굴 모사)

  • Kim, Jihwan;Lee, Ji-Hyeong;Jang, Hoyoung;Joo, Young Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.27-27
    • /
    • 2021
  • 세굴은 유체와 유사의 상호작용으로 발생하는 중요한 자연 현상 중 하나로, 구조 및 지반 붕괴, 홍수, 생태계 파괴 등의 문제를 야기할 수 있다. 이러한 세굴 현상을 예측하기 위해 많은 수치적 연구가 진행되어왔지만, 대부분의 연구가 기존 격자기반방법인 유한체적법 (FVM)과 개별요소법 (DEM)이 연성된 모델을 이용하였고, 이는 격자 의존도로 인한 정확도와 효율성의 문제점을 보였다. 해결책으로 입자기반 유체해석 방법인 약압축성 SPH (WCSPH)와 개별요소법의 결합모델을 이용한 모의가 연구되어 왔지만, 단순 밀도차를 활용한 유체해석방법이 압력의 불안정성을 야기하여 유사의 운동에도 영향을 주는 결과를 보였다. 또한, 개별요소법의 특성상 모의 입자의 크기를 실제 실험 입자의 크기와 동일하게 설정하면서 입자수가 지나치게 증가해 계산의 효율성이 현저히 낮아지게 되었고, 이로 인해 실제 자연 지형에 적용하는데 어려움을 보여주었다. 본 연구에서는 향상된 세굴 수치모의해석을 위해 반복법을 통해 안정적인 유체 압력을 계산하는 비압축성 SPH (ISPH)와 개별요소법을 연성한 ISPH-DEM 모델을 사용하였다. 또한, 계산속도 향상을 위해 하나의 입자가 다수의 작은 입자의 움직임을 대표하는 Coarse-grained 방법을 적용하여 기존 모델을 개선하였다. 개선된 모델을 NFLOW ISPH PURPLE 소프트웨어를 이용하여 세굴 현상을 수치 모의하였고 실험 결과와 검증을 진행한 결과, 세굴의 깊이, 너비, 형상 등을 비교하였을 때 약 10% 이내의 오차를 보였고, Coarse-grained 방법을 통한 입자 수 감소로 최소 13배 증가된 해석 속도를 보였다. 이를 통해 본 연구에서 제시된 모델이 실제 자연 지형에서의 적용가능성을 확인할 수 있었다.

  • PDF

Estimation of Strength and Deformation Modulus of the 3-D DFN System Using the Distinct Element Method (개별요소법을 이용한 삼차원 DFN 시스템의 강도 및 변형계수 추정)

  • Ryu, Seongjin;Um, Jeong-Gi;Park, Jinyong
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.15-28
    • /
    • 2020
  • In this study, a procedure was introduced to estimate strength and deformation modulus of the 3-D discrete fracture network(DFN) systems using the distinct element method(DEM). Fracture entities were treated as non-persistent square planes in the DFN systems. Systematically generated fictitious fractures having similar mechanical characteristics of intact rock were combined with non-persistent real fractures to create polyhedral blocks in the analysis domain. Strength and deformation modulus for 10 m cube domain of various deterministic and stochastic 3-D DFN systems were estimated using the DEM to explore the applicability of suggested method and to examine the effect of fracture geometry on strength and deformability of DFN systems. The suggested procedures were found to effective in estimating anisotropic strength and deformability of the 3-D DFN systems.

Application of Laboratory Pressurized Vane Shear Test and Discrete Element Method for Determination of Foam-conditioned Soil Properties (폼제에 의해 개선된 흙의 물성 도출을 위한 실내 가압 베인 전단시험 및 개별요소법의 적용)

  • Kang, Tae-Ho;Lee, Hyobum;Choi, Hangseok;Choi, Soon-Wook;Chang, Soo-Ho;Lee, Chulho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.65-74
    • /
    • 2020
  • In earth pressure balance (EPB) shield TBM tunnelling, the application of soil conditioning which improves properties of the excavated muck by additives injection, is generally used for enhancing the performance of TBM. Therefore it is important to apply the soil conditioning in the numerical model which simulates excavation performance of TBM equipment, but related studies on a method that simulates soil conditioning are insufficient to date. Accordingly, in this study, an laboratory pressurized vane test apparatus was devised to evaluate the characteristics of conditioned soil. Using the apparatus, the vane shear tests were performed on foam-conditioned soil with different shear rates, and the test was numerically simulated with discrete element method (DEM). Finally, the contact properties of particles in DEM were determined by comparing the results of test and analysis, and it indicates that the applicability of pressurized vane test and DEM model for reproducing soil conditioning in TBM excavation model with DEM.

Numerical Modeling of Soil-Cement based on Discrete Element Method (개별요소법을 이용한 시멘트 혼합토의 수치모델링)

  • Jeong, Sang-Guk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.33-42
    • /
    • 2016
  • Discrete Element Method was conducted for rock and coarse-grained materials in development of granular mechanics and related numerical model due to analyze and apply micromechanical property. And it was verified that the analysis to consider bonding effect was insufficient. In this study, to overcome limits of existing method, it was conducted to analyze difference between indoor test result and bonding effect using $PFC^{3D)}$. For indoor test of mixed soil, uniaxial compression tests by curing time and by cement content were performed. And, DEM to suitable for each condition of indoor test was conducted. In the result of this study, in terms of geotechnics, it was verified that DEM can be used for application as numerical laboratory as well as prediction of micro and macro behavior about bonding effect of mixed soil.