• Title/Summary/Keyword: 개량공

Search Result 741, Processing Time 0.027 seconds

Seismic Response of Stone Column-Improved Soft Clay Deposit by Using 1g Shaking Table (1g 진동대를 이용한 쇄석말뚝으로 개량된 연약점토 지반의 지진 응답 특성)

  • Kim, Jin-Man;Lee, Hyun-Jin;Ryu, Jeong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.61-70
    • /
    • 2010
  • A series of shaking table tests were conducted to estimate the seismic performance of soft ground deposits improved by stone column. The amplification of acceleration, shear strain, and shear wave velocity were evaluated to compare the seismic response of unimproved ground deposits with that of improved ground deposits. From the test results, it was shown that the stone column can prevent large shear deformation in ground deposits. However, it was also found that the acceleration of improved ground deposits may be amplified more than that of unimproved ground deposits when it was subjected to short periodic seismic wave. The results suggest that it is necessary to perform the ground response analysis with model experiments for both unimproved and improved ground deposits to evaluate the effect of stone column on the seismic performance of improved ground deposits.

Wear Characteristics of Mg Light Alloy Coated by APEO Surface Treatment (개량된 플라즈마 전해산화기술로 경면처리시킨 Mg 경량합금의 내마모 특성)

  • Lee, Seung-Hyeop;Gang, Gye-Myeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.151-152
    • /
    • 2007
  • 개량된 플라즈마 전해산화 기술(Advanced Plasma Electrolytic Oxidation; APEO)을 사용하여 마그네슘((Mg)기판표면을 경면처리한 후 내마모 특성을 조사하였다. 시편의 마찰계수 거동과 시간에 따른 마모깊이의 변화를 조사하여 APEO 처리 후 마모특성의 변화를 관찰하였다.

  • PDF

An Experimental Study on the Shear Wave Velocity Improvement of Ground by Ground Improvement (지반개량을 통한 원지반의 전단파속도 향상에 대한 실험적 연구)

  • Jeong, Chan-Yu;Mun, Jae-Sung;Jo, Myoung-Su;Kang, Ho-deok;Yang, Hee-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.33-39
    • /
    • 2019
  • In this study, an experimental study was carried out with variables of the shape of the ground soil-binder in order to find out whether the shear wave velocity and the ground grade were improved by the ground improvement. In this study, the shear wave velocity was measured using the crosshole method with variables of the shape of the ground soil-binder. In addition, the prediction formula of the shear wave velocity for suitability of N-Values for the domestic soil conditions are proposed using the result value of this study and the existing results of shear wave velocity. As a result, the shear wave velocity of the ground has increased. In addition, the prediction formula proposed in this study reasonably issued the existing experimental results regardless of the stratum conditions.

Characteristics on Electroosmosis Ground Improvement Using Nano-geosynthetics (나노섬유를 이용한 동전기 지반개량에 관한 특성)

  • Ahn, Kwangkuk;Jeong, Kusic;Lee, JunDae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.59-63
    • /
    • 2009
  • In this study, Nano-geosynthetics with electroosmosis method was used and tried to verify the possibility of usage for soft ground improvement. Electroosmosis tests were performed with increasing the voltage level and changing distance between electrodes. The electrokinetic cell was assembled and a Nano-geosynthetics was inserted into the plastic drain board. And electroosmosis was applied to the disturbed kaolin clay. In order to study the effects of ground improvement, ground settlement, water content, collected pore water and shear strength were compared and analyzed with non-applied kaolin clay. Also, the electroosmosis tests were performed with changing the distance between electrodes and the voltage size. As a results of changing the distance and voltage between electrodes, the more voltage size was increased, the more the settlement of ground, shear strength and collected pore water were increased. As the distance between electrodes were increased, the settlement of ground, shear strength, water content and collected pore water were decreased. Finally, Nano-geosynthetics as a material of electrode have the sufficient potential to improve soft ground.

  • PDF

Reclamation and Soil Improvement on Ultra Soft Soil (II) - Soil Improvement (초연약지반의 매립 및 지반개량 사례 연구 (II) - 지반개량)

  • Na, Yung-Mook;Kim, Hee-Hong;Kwon, Duk-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.33-44
    • /
    • 2005
  • The 'Silt Pond' is 180 hectares in size and contained ultra soft slurry-like soil varying between 3 to 20 meters in thickness. Soil improvement work in the Silt Pond commenced by installing vertical drains in the mid of 1996, following completion of sand spreading up to +4.0m CD. Prior to soil improvement work in the main area of Silt Pond, experimental tests including laboratory tests with a large diameter consolidation cell and pilot tests were carried out to investigate the deformation behavior of an extremely soft soil. Due to its high compressibility, large strain usually occurred in the initial stage of deformation does not comply with Terzaghi's one dimensional consolidation theory. Taking into consideration experimental test results, the soil improvement works were carried out in main area of Silt Pond containing ultra soft soil. This paper presents the case study on improvement of ultra-soft soil.

  • PDF

A Study on the Deformation of Ground by the Low Slump Mortar Grouting (저유동성 몰탈주입 적용지반의 거동에 관한 연구)

  • Do, Jongnam;Lee, Jinkyu;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.5-13
    • /
    • 2010
  • Low slump mortar grouting is widely used in reinforcement of structural foundation and ground improvement in soft ground, and has advantage which construction is possible in insufficient space. However it has been not yet studied sufficiently to estimate the effect of ground improvement in design step and to prove the estimating method. So the method must be developed in order to use the low slump mortar grouting method in various cases. In this study, the field tests were performed in the reclaimed soils to measure the effect of ground improvement. Then it was compared with what was calculated by the existing formula that was formerly suggested. The results show that the value from the formula was similar with the value from the field tests. Also it was proved that the formula was available to estimate the effect of ground improvement in the loose granular soils.

Improvement Effects of Soft Ground from Quick Lime Piles (생석회 말뚝에 의한 연약지반의 개량 효과)

  • Chun, Byung-Sik;Ko, Kab-Soo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.91-101
    • /
    • 2001
  • This paper investigates the effectiveness of quick lime piles for soft ground improvement. The field tests based on the results of the laboratory test were performed, and the results of field tests were compared with those of numerical analyses(FEM). The results of the field test showed that the domestic quick lime was very effective in reducing the water contents of the surrounding ground quickly due to its characteristics such as digestion, absorption, and exothermic reactions. Accordingly, consolidation occurred without any additional load increment and the shear strength of surrounding ground was increased more than twice. Therefore the quick lime pile method could be considered as an excellent improvement technique reducing the improvement period for soft ground. For the practical applications of the quick lime pile method, issues such as hydration heat, particulation and equipment enhancement should be solved through continuous research and development.

  • PDF

Test Facility Improvement for Hot Firing Test of a 7-tonf Combustor (7톤급 연소기 시험을 위한 시험 설비 변경)

  • Kim, Hyeon-Jun;Lim, Byoung-Jik;Kang, Dong-Hyuk;Jae, Won-Ju;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.493-497
    • /
    • 2012
  • The rocket engine test facility(ReTF) was improved for hot firing tests of 7 ton-class liquid rocket engine combustion chamber, which will be used for the third stage of the Korea Space Launch Vehicle II(KSLV-II), considering convenience of operation and maintenance, flexibility and safety. In this paper, main modifications and functions of improved ReTF were described. 초 록

  • PDF

A Fundamental Study on Reinforced Soil Slope with Improved Soil Facing (개량토 벽면공을 활용한 보강성토사면에 관한 기초적 연구)

  • Bhang, In-Hwang;Seo, Se-Gwan;Kim, Kwang-Leyol;Kim, You-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.35-44
    • /
    • 2013
  • This paper presents the slope wall technique using soil improvement material for reinforced soil slope through laboratory scale model tests, and verifies the experimental results comparing with numerical analysis. In additional, case study in field has performed to investigate the deformation of reinforced soil slope for 6 months. As a result of laboratory scale model test, numerical analysis, and case study, the reinforcement effect of the slope wall technique using soil improvement material is sufficient to be constructed as reinforced soil slope. The technique shows the stable ratio (0.4%) of horizontal to vertical deformation in the surface loading.

Behavior of Soft Ground Improved by CSCP and SCP Using Centrifuge Modeling (원심모델링을 이용한 CSCP 및 SCP로 개량된 연약지반의 거동)

  • Ahn Kwang-Kuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.21-30
    • /
    • 2006
  • In this study, centrifuge model tests were performed to investigate the stress concentration ratio, bearing capacity and deformation modes of piles in clay ground improved by granular piles with two types of pile (CSCP, SCP) and various replacement ratios (0, 20, 40, 60%). According to the results of tests, the load ratio of ground improved by SCP and CSCP proportionally increased as replacement ratio increased. It shows that average normalized load of ground improved by CSCP is higher by about $8{\sim}21%$ than by SCP. As a result of rigid loading tests, it was evaluated that average stress concentration ratio of CSCP is higher than that of SCP. Only expansion failure occurred in CSCP, whereas SCP showed the expansion and shear failure simultaneously.