• Title/Summary/Keyword: 개구형 크랙

Search Result 49, Processing Time 0.039 seconds

Study on Method of Crack Detection of L-beams with Coupled Vibration (연성진동하는 L형 단면 보의 크랙 검출 방법에 대한 연구)

  • Son, In-Soo;Cho, Jeong-Rae;Ahn, Sung-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.78-86
    • /
    • 2010
  • This paper aims to investigate the natural frequency of a cracked cantilever L-beams with a coupled bending and torsional vibrations. In addition, a theoretical method for detection of the crack position and size in a cantilever L-beams is presented based on natural frequencies. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using extended Hamilton's Principle. The dynamic transfer matrix method is used for calculation of a exact natural frequencies of L-beams. In order to detect the crack of L-beams, the effect of spring coefficients for bending moment and torsional force is included. In this study, the differences between the actual data and predicted positions and sizes of crack are less than 0.5% and 6.7% respectively.

Experimental Study on Crack Detection of Clamped-clamped Beams (양단 고정보의 크랙 검출에 대한 실험적 연구)

  • Son, In-Soo;Ahn, Sung-Jin;Yoon, Han-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.47-54
    • /
    • 2010
  • In this paper, the purpose is to study a method for detection of crack in clamped-clamped beams using the vibration characteristics. The natural frequency of beam is obtained by FEM and experiment. The governing differential equations of a Timoshenko beam are derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The differences between the actual and predicted crack positions and sizes are less than 9.8% and 28%, respectively.

Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks (다중 크랙이 있는 복합재료 보의 자유진동 특성)

  • 하태완;송오섭
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.9-20
    • /
    • 2000
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

Analysis of Stability and Dynamic Behaviour of Cracked Cantilever T-beams Subjected to Axial Force (축압축력을 받는 T형상 크랙 보의 안정성 및 동특성 해석)

  • Son, In-Soo;Jo, Jeng-Rae;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.453-459
    • /
    • 2010
  • In this paper, the purpose is to investigate the stability of cracked cantilever T-beams subjected to axial force. In addition, an analysis of the natural frequency of a cracked beams as crack position, crack depth and tip mass is investigated. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by the energy expressions using extended Hamilton's Principle. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The results of this study will contribute to the safety test and stability estimation of structures of a cracked T-beams subjected to axial force.

The Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations (탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.826-831
    • /
    • 2005
  • In this paper the effect of moving mass on dynamic behavior of cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. The crack is assumed to be in the first mode of fracture. As the depth of the crack is increased, the tip displacement of the cantilever beam is increased. When the crack depth is constant the frequency of a cracked beam is proportional to the spring stiffness.

  • PDF

Dynamic Behavior of Rotating Cantilever Beam with Crack (크랙을 가진 회전 외팔보의 동특성해석)

  • Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.707-710
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip displacement and the axial tip deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration.

  • PDF

Stability of Rotating Cantilever Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 회전 외팔 파이프의 안정성 해석)

  • Kim, Dong-Jin;Yoon, Han-Ik;Son, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.356-359
    • /
    • 2007
  • In this paper, the stability of a rotating cantilever pipe conveying fluid with a crack is investigated by the numerical method. That is, the influences of the rotating angular velocity, mass ratio and crack severity on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived using the Euler beam theory and the Lagrange's equation. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. Generally, the critical flow velocity for flutter is proportional to the angular velocity and the depth of crack. Also, the critical flow velocity and stability maps of the rotating pipe system as a function of mass ratio for the changing each parameter are obtained.

  • PDF

Vibration Analysis of a Cracked Beam with a Concentrated Mass Undergoing Rotational Motion (크랙과 집중질량을 갖는 회전 외팔보의 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.354-359
    • /
    • 2008
  • Modal characteristics of a cracked beam with a concentrated mass undergoing rotational motion are investigated in this paper. Hybrid deformation variables are employed to derive the equations of motion of a rotating cantilever beam. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. To obtain more general information, the equations of motion are transformed into a dimensionless form in which dimensionless parameters are identified. The effects of the dimensionless parameters related to the angular speed, the depth and location of a crack and the size and location of a concentrated mass on the modal characteristics of the beam are investigated numerically.

  • PDF

A Study on the Dynamic Behavior of a Simply Supported Beam with Moving Masses and Cracks (이동질량과 크랙을 가진 단순지지 보의 동특성에 관한 연구)

  • 윤한익;손인수;조정래
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.47-52
    • /
    • 2003
  • To determine the effect of transverse open crack on the dynamic behavior of simply-supported Euler-Bernoulli beam with the moving masses, an iterative modal analysis approach is developed. The influence of depth and position of the crack in the beam, on the dynamic behavior of the simply supported beam system, have been studied by numerical method. The cracked section is represented by a local flexibility matrix, connecting two undamaged beam segments that is, the crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section, and is derived by applying a fundamental fracture mechanics theory. As the depth of the crack is increased, the mid-span deflection of the simply-supported beam, with the moving mass, is increased. The crack is positioned in the middle point of the pipe, and the mid-span defection of the simply-supported pipe represents maximum deflection.