• Title/Summary/Keyword: 개구응력강도계수

Search Result 8, Processing Time 0.031 seconds

A Modification in the Analysis of the Growth Rate of Short Fatigue Cracks in S45C Carbon Steel under Reversed Loading (반복하중조건 하에서의 S45C 탄소강에 대한 미소피로균열 성장속도 해석의 수정)

  • McEvily,A.J.
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.96-105
    • /
    • 1995
  • A modified method for the analysis of short fatigue crack growth has been presented, and calculations based upon the modified method are compared with experimental results for S45C carbon steel. It is also shown that the modified method is in good agreement with experimental data. The proposed equation for the fatigue crack growth rates includes a material constant which relates the threshold level to the endurance limit, a correction for elastic-plastic behaviour and a means for dealing with the effects of crack closure. In this study one of the modifications is to substitute the Forman' s elastic expression of the stress intensity factor range into the geometrical factor The other is a consideration of the bending effect which is developed from the moment caused by the eccentric cross sectional geometry as the crack grows. Thus, this method is useful for residual life prediction of the mechanical structures as well as the welding structures.

  • PDF

MODEL I FRACTURE IN CONCRETE USING CRACK LINE WEDGE LOADED DOUBLE CANTILEVER BEAM (Clwl-Dcb식편을 이용한 콘크리트의 개구형 파괴)

  • 송정근
    • Magazine of the Korea Concrete Institute
    • /
    • v.1 no.2
    • /
    • pp.101-112
    • /
    • 1989
  • 콘크리트에 선형파괴역할의 적용가능성을 연구한 많은 논문이 발표되었다. 본 논문에서는 CLWL-DCB식편을 이용한 콘크리트의 개구형파괴를 연구하였다. 표면구열길이는 리프리카를 사용하여 직접적인 방법으로 측정하였고, 이 결과은 실험에서 얻은 측정가중과 구열개구변위의 관계곡선을 이용하여 분석하였다. 감계응력강도계수와 감계구열선단위는 Two Parameter 모델을 사용하여 유효구열선단에서 구하였다. LEFM 구열단면과 실험으로 구한 구열단면으로부터 폐쇄압력을 얻기 위하여 중첩법을 적용하여 5종의 균열모델을 평가하였다.

Fracture Characteristics of Concrete at Early Ages (초기재령 콘크리트의 파괴 특성)

  • Lee, Yun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.58-66
    • /
    • 2002
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By taking various strengths and ages, load-crack mouth opening displacement curves were obtained, and the results were analyzed by linear elastic fracture mechanics and the finite element method. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete ages from 1 day to 28 days. By numerical analysis four parameters of bilinear softening curve from 1 day to 28 days were obtained. The obtained fracture parameters and bilinear softening curves at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

An Experimental Study on Tensile Properties of Steel Fiber-Reinforced Ultra High Strength Concrete (강섬유 보강 초고강도 콘크리트의 인장 특성 실험 연구)

  • Yang, In-Hwan;Park, Ji-Hun;Lee, Jae-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.279-286
    • /
    • 2019
  • In this study, an experimental study on the tensile properties of steel fiber-reinforced ultra high strength concrete(UHSC) with a standard compressive strength of 180MPa was performed. Steel fibers with a volume ratio of 1% were mixed to prepare direct tensile strength specimens and prism specimens for the three-point bending test. The fabricated specimens were set up in the middle section of the specimen to induce cracks, and the test was carried out according to each evaluation method. First, the stress-strain curves were analyzed by performing direct tensile strength tests to investigate the behavior characteristics of concrete after cracking. In addition, the load-CMOD curve was obtained through the three-point bending test, and the inverse analysis was performed to evaluate the stress-strain curve. Tensile behavior characteristics of the direct tensile test and the three-point bending test of the indirect test were similar. In addition, the tensile stress-strain curve modeling presented in the SC structural design guidelines was performed, and the comparative analysis of the measured and predicted values was performed. When the material reduction factor of 1.0 was applied, the predicted value was similar to the measured value up to the strain of 0.02, but when the material reduction factor of 0.8 was applied, the predicted value was close to the lower limit of the measured value. In addition, when the strain was greater than 0.02, the predicted value by SC structural design guideline to underestimated the measured value.

Development of Strength Evaluation System Using the Combined Grillage and Shell Element for the Strength around the Opening (골조구조 해석과 판 요소 해석의 결합을 활용한 개구부 강도평가 시스템 개발)

  • Kim, Sung-Chan;Lee, Kyung-Seok;Song, Jae-Young;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.605-611
    • /
    • 2007
  • A ship is composed of many grillage structures especially the deck which is consists of primary girders, transverse and longitudinal members. Several holes are arranged on these primary members for pipes, vents, etc. which cause stress concentration due to the discontinuity of the member. It is not easy to get the stress values around all these holes because of the huge amount of time necessary for computations. In this paper, a simple method to compute for the stress around the holes is suggested. This method is composed of two steps which are grillage analysis for primary members and detailed stress analysis using the results of the grillage analysis. This method is made for the design of the primary members with openings supporting the deck structure.

Development of Analytical Simulation Model for Fatigue Crack Propagation : Crack Closure Behavior Modeling (균열개폐구 거동을 고려한 피로균열전파 해석 모델의 개발 : 균열 개폐구 거동의 모형화)

  • C.W. Kim;I.S. Nho;H.H. Van;B.C. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.74-83
    • /
    • 2001
  • After the concept of fracture mechanics was applied to fatigue crack propagation by Paris. Paris' law is widely used to predict fatigue crack growth behavior. Since Elber proposed the effective stress intensity factor(SIF) and showed a good agreement with experimental results using the proposed SIF, emphasis in crack propagation studies has been placed on measuring the effective stress range ratio. This paper proposes a numerical model to simulate the crack closure and propagation behaviour under various loading spectrum. The validity of the proposed model is checked by comparing with the Toyosada numerical solutions on the crack propagation behaviour. Important insights developed are summarized.

  • PDF

Effects of the Thermal Stress and Water Pressure on the Deformation Behavior of Granite (열응력과 수압이 화강암의 변형 거동에 미치는 영향)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • In this study, effects that thermal stress and water pressure have on the deformation behaviour of granite specimens recovered in Gagok Mine are estimated. To analyze effects of the thermal stress and water pressure on the deformation behaviour, granite specimens were preheated with cycles of predetermined temperatures ranging $200^{\circ}C$ to $700^{\circ}C$ and 500, 600, $700^{\circ}C$ specimens were pressurized to 7.5 MPa. The deformation behaviour of the specimens had been studied by performing uniaxial compressive tests. Axial and lateral strains of specimens were found to increase with increasing temperature, and above $600^{\circ}C$, the increase of strains were more pronounced. The reduction trends of uniaxial compressive strength and Young's modulus with temperature appeared to follow an exponential decay function. Specimens under water pressure showed the more inelastic deformation characteristics, which means that water pressure has an effect on the widening and extending of micro-cracks existed in preheated specimens.

Numerical Analysis of ECC Uniaxial Tension Behavior (ECC의 1축 인장 거동 해석)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kwon, Seung-Hee;Kim, Jeong-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.917-920
    • /
    • 2008
  • ECC is a special kind of high performance cementititous composite which exhibits typically more than 2% tensile strain capacity by bridging microcracks at a crack section. Therefore, micromechanics should be adopted to obtain multiple cracking and strain hardening behavior. This paper propose a linear elastic analysis method to simulate the multiple cracking and strain hardening behavior of ECC. In an analysis, the stress-crack opening relation modified considering the orientation of fibers and the number of effective fibers is adopted. Furthermore, to account for uncertainty of materials and interface between materials, the randomness is assigned to the tensile strength(${\sigma}_{fci}$), elastic modulus($E_{ci}$), peak bridging stress(${\sigma}_{Bi}$) and crack opening at peak bridging stress(${\delta}_{Bi}$), initial stress at a crack section due to chemical bonding, (${\sigma}_{0i}$), and crack spacing(${\alpha}_cX_d$). Test results shows the number of cracking and stiffness of cracked section are important parameters and strain hardening behavior and maximum strain capacity can be simulated using the proposed method.

  • PDF