• Title/Summary/Keyword: 강화 학습

Search Result 1,608, Processing Time 0.037 seconds

Autoencoder and Semi-Supervised GAN-based candidate identity verification system in qualifying examination (자격시험에서 오토인코더 및 Semi-Supervised GAN 기반의 응시자 본인 확인 시스템 제안)

  • Lim, Se-Jin;Kim, Hyun-Ji;Kang, Yea-Jun;Kim, Won-Woong;Song, Gyeong-Ju;Yang, Yu-Jin;Oh, Yu-Jin;Jang, Kyung-Bae;Seo, Hwa-Jeong
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.659-662
    • /
    • 2021
  • 국내에서는 매년 많은 수의 자격시험이 치러지고 있다. 현재 대부분의 시험장에서 응시자 본인 확인 절차는 감독관이 응시자의 얼굴과 신분증 사진을 비교하는 방식으로 이루어진다. 하지만 이 방식은 사람에 따라 오차가 클 수 있으며, 사진과 눈에 띄는 차이가 없으면 동일인물로 판단하기 쉽다. 최근까지도 대리응시 이슈가 발생하고 있어 근절을 위한 보다 강력한 조치가 필요하다. 본 논문에서는 지문과 오토인코더, SGAN을 이용하여 대리응시방지를 강화할 수 있는 본인 확인 시스템을 제안한다. 이때 응시자의 지문정보가 그대로 인증 서버에 저장되면 응시자의 생체정보가 노출될 수 있다는 문제점이 존재한다. 따라서 오토인코더를 통해 지문의 특징점만 추출하여 인증용 이미지를 생성하고 이 이미지를 서버에 저장하여 학습시키도록 한다. 적은 학습데이터 환경에서 분류기로써 좋은 성능을 갖는 SGAN을 통해 인증 이미지와 응시자가 동일인물인지 확인할 수 있다. 서버가 공격을 받더라도 응시자의 지문데이터가 그대로 노출되지 않게 되어 보안 취약점을 극복할 수 있다.

A Study on the Major Perception of Nursing Freshmen (간호학과 신입생의 전공 인식에 관한 연구)

  • Jung Hyo Ju
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.145-151
    • /
    • 2023
  • This study was attempted to provide basic data for the development of the nursing major curriculum and the admission strategy for attracting new students by identifying the perception of the nursing major among freshmen in the nursing department. Participants in this study were 40 freshmen who agreed to participate in the study among freshmen in the department of nursing who completed self-exploration, a required liberal arts course for freshmen opened in the first semester of 2021. Data collection was a study diary written by participants after 15 weeks of class, and the traditional content analysis method suggested by Heieh and Shannon was applied to data analysis. As a result of the study, three themes were derived: 'motivation for entering the nursing major', 'value of the nursing major', and 'obstacles to the nursing major'. Therefore, colleges and departments need to strengthen their entrance examination strategies to develop and conduct field trip programs for experiential departments linked to middle and high schools and It is necessary to solve the difficulties in taking major courses by providing subject and extracurricular programs targeting students who lack basic learning ability.

Quadruped Robot for Walking on the Uneven Terrain and Object Detection using Deep Learning (딥러닝을 이용한 객체검출과 비평탄 지형 보행을 위한 4족 로봇)

  • Myeong Suk Pak;Seong Min Ha;Sang Hoon Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.237-242
    • /
    • 2023
  • Research on high-performance walking robots is being actively conducted, and quadruped walking robots are receiving a lot of attention due to their excellent mobility and adaptability on uneven terrain, but they are difficult to introduce and utilize due to high cost. In this paper, to increase utilization by applying intelligent functions to a low-cost quadruped robot, we present a method of improving uneven terrain overcoming ability by mounting IMU and reinforcement learning on embedded board and automatically detecting objects using camera and deep learning. The robot consists of the legs of a quadruped mammal, and each leg has three degrees of freedom. We train complex terrain in simulation environments with designed 3D model and apply it to real robot. Through the application of this research method, it was confirmed that there was no significant difference in walking ability between flat and non-flat terrain, and the behavior of performing person detection in real time under limited experimental conditions was confirmed.

Autoencoder-Based Anomaly Detection Method for IoT Device Traffics (오토인코더 기반 IoT 디바이스 트래픽 이상징후 탐지 방법 연구)

  • Seung-A Park;Yejin Jang;Da Seul Kim;Mee Lan Han
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.281-288
    • /
    • 2024
  • The sixth generation(6G) wireless communication technology is advancing toward ultra-high speed, ultra-high bandwidth, and hyper-connectivity. With the development of communication technologies, the formation of a hyper-connected society is rapidly accelerating, expanding from the IoT(Internet of Things) to the IoE(Internet of Everything). However, at the same time, security threats targeting IoT devices have become widespread, and there are concerns about security incidents such as unauthorized access and information leakage. As a result, the need for security-enhancing solutions is increasing. In this paper, we implement an autoencoder-based anomaly detection model utilizing real-time collected network traffics in respond to IoT security threats. Considering the difficulty of capturing IoT device traffic data for each attack in real IoT environments, we use an unsupervised learning-based autoencoder and implement 6 different autoencoder models based on the use of noise in the training data and the dimensions of the latent space. By comparing the model performance through experiments, we provide a performance evaluation of the anomaly detection model for detecting abnormal network traffic.

Blockchain and AI-based big data processing techniques for sustainable agricultural environments (지속가능한 농업 환경을 위한 블록체인과 AI 기반 빅 데이터 처리 기법)

  • Yoon-Su Jeong
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.17-22
    • /
    • 2024
  • Recently, as the ICT field has been used in various environments, it has become possible to analyze pests by crops, use robots when harvesting crops, and predict by big data by utilizing ICT technologies in a sustainable agricultural environment. However, in a sustainable agricultural environment, efforts to solve resource depletion, agricultural population decline, poverty increase, and environmental destruction are constantly being demanded. This paper proposes an artificial intelligence-based big data processing analysis method to reduce the production cost and increase the efficiency of crops based on a sustainable agricultural environment. The proposed technique strengthens the security and reliability of data by processing big data of crops combined with AI, and enables better decision-making and business value extraction. It can lead to innovative changes in various industries and fields and promote the development of data-oriented business models. During the experiment, the proposed technique gave an accurate answer to only a small amount of data, and at a farm site where it is difficult to tag the correct answer one by one, the performance similar to that of learning with a large amount of correct answer data (with an error rate within 0.05) was found.

Design of a Neuro-Fuzzy System Using Union-Based Rule Antecedent (합 기반의 전건부를 가지는 뉴로-퍼지 시스템 설계)

  • Chang-Wook Han;Don-Kyu Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.13-17
    • /
    • 2024
  • In this paper, union-based rule antecedent neuro-fuzzy controller, which can guarantee a parsimonious knowledge base with reduced number of rules, is proposed. The proposed neuro-fuzzy controller allows union operation of input fuzzy sets in the antecedents to cover bigger input domain compared with the complete structure rule which consists of AND combination of all input variables in its premise. To construct the proposed neuro-fuzzy controller, we consider the multiple-term unified logic processor (MULP) which consists of OR and AND fuzzy neurons. The fuzzy neurons exhibit learning abilities as they come with a collection of adjustable connection weights. In the development stage, the genetic algorithm (GA) constructs a Boolean skeleton of the proposed neuro-fuzzy controller, while the stochastic reinforcement learning refines the binary connections of the GA-optimized controller for further improvement of the performance index. An inverted pendulum system is considered to verify the effectiveness of the proposed method by simulation and experiment.

Cascade Fusion-Based Multi-Scale Enhancement of Thermal Image (캐스케이드 융합 기반 다중 스케일 열화상 향상 기법)

  • Kyung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.301-307
    • /
    • 2024
  • This study introduces a novel cascade fusion architecture aimed at enhancing thermal images across various scale conditions. The processing of thermal images at multiple scales has been challenging due to the limitations of existing methods that are designed for specific scales. To overcome these limitations, this paper proposes a unified framework that utilizes cascade feature fusion to effectively learn multi-scale representations. Confidence maps from different image scales are fused in a cascaded manner, enabling scale-invariant learning. The architecture comprises end-to-end trained convolutional neural networks to enhance image quality by reinforcing mutual scale dependencies. Experimental results indicate that the proposed technique outperforms existing methods in multi-scale thermal image enhancement. Performance evaluation results are provided, demonstrating consistent improvements in image quality metrics. The cascade fusion design facilitates robust generalization across scales and efficient learning of cross-scale representations.

Analysis of Metaverse Technology Trends and Case Studies of Utilization in the Jewelry Industry in the Post-COVID (포스트 코로나의 메타버스 기술 동향과 주얼리 산업의 활용 사례 분석)

  • Hye-Rim Kang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.675-680
    • /
    • 2024
  • This study aims to examine the trends in Metaverse technology following the Post-COVID era and analyze the use cases in the jewelry industry. With the endemic, the business environment for companies has shifted from online to offline, leading to a reduced public interest in the Metaverse. However, examining the global jewelry brand trends in metaverse technology reveals advancements in AR/VR technologies that enhance realism and evolve the metaverse into a space without the uncanny gap between virtual and reality. The Metaverse exhibits three main characteristics in the Post-COVID era. First, there is a transformation in the business domain, starting with digital twins. Second, it is integrating with various information and communication technologies. Third, setting a direction for Metaverse operation as an omni-channel is being emphasized. Utilizing assets learned during the COVID-19 period and continuing to learn about digital and online technologies is essential for securing market competitiveness. This paper discusses how to enhance the competitiveness of jewelry industry entities based on the trends of Metaverse technology in the Post-COVID era.

A Study on the Development Method of e-Learning Contents by the Level of Demand for Landscaping Practical Education - Development and Reuse of Modular Learning Objects - (조경실무 교육수요 수준별 이러닝 콘텐츠 개발 방법론 - 모듈형 학습객체 개발과 재사용을 중심으로 -)

  • Choi, Ja-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.3
    • /
    • pp.1-13
    • /
    • 2018
  • Landscape Architecture is a minority manpower field that requires wide knowledge and experience. Therefore, the service market is narrower than other fields, and education service for practitioners is lacking. The purpose of this study is to propose e-learning content development methodology that can provide customized landscaping practical education according to the level of education and increase the economic efficiency of the development process. First, in theoretical review, the ADDIE model was modified to select the curriculum development model that pursues efficiency and introduced the concept of reusing learning objects in the SCORM-based model. In particular, to overcome the problems presented in the precious studies, the analysis and design stages have been strengthened and faculty designers with integrated knowledge of Landscape Architecture and ICT have led the overall phase. The actual development process is based on a step by step procedure--analysis of landscaping practitioners needs and environments, etc., teaching and learning procedures and the design of activities considering contents reuse, the first development such as actual shooting and editing, and the second development reusing the first development content--and was done in the order of evaluation and revision of professionalism and satisfaction. As a result of the study, the space-based courses composed of modular learning objects were first developed as 216 courses in 8 subjects, as 208 courses in 3 subjects in total, in which the modularized learning object are crossed and combined in units and difficulty-based courses were second developed in 216 courses with 3 subjects in total. As a result of the evaluation the satisfaction assessment of the overall satisfaction was 4.20 and the average value of the eight measures was 3.97, both being close to 4.0. For the professional assessment, the scores of 8 subjects were very high at 84.8 to 96.4 points. in context, the scores of 5 subjects were equal to from 89.9 to 96.4 points. In conclusion, as the study was conducted based on a clear understanding of the digital characteristics of e-learning contents and general characteristic of the landscaping industry, it was possible to develop a curriculum by developing a course composed of modular learning objects and reusing learning objects by unit. In particular, it has been proven to be effective in conveying professional knowledge and experiences via general procedures and provided an opportunity to overcome some analog problems that may occur in offline education. In the future, further studies need to be done by expanding the content and by focusing on segmented subjects.

Improving the Accuracy of Document Classification by Learning Heterogeneity (이질성 학습을 통한 문서 분류의 정확성 향상 기법)

  • Wong, William Xiu Shun;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.21-44
    • /
    • 2018
  • In recent years, the rapid development of internet technology and the popularization of smart devices have resulted in massive amounts of text data. Those text data were produced and distributed through various media platforms such as World Wide Web, Internet news feeds, microblog, and social media. However, this enormous amount of easily obtained information is lack of organization. Therefore, this problem has raised the interest of many researchers in order to manage this huge amount of information. Further, this problem also required professionals that are capable of classifying relevant information and hence text classification is introduced. Text classification is a challenging task in modern data analysis, which it needs to assign a text document into one or more predefined categories or classes. In text classification field, there are different kinds of techniques available such as K-Nearest Neighbor, Naïve Bayes Algorithm, Support Vector Machine, Decision Tree, and Artificial Neural Network. However, while dealing with huge amount of text data, model performance and accuracy becomes a challenge. According to the type of words used in the corpus and type of features created for classification, the performance of a text classification model can be varied. Most of the attempts are been made based on proposing a new algorithm or modifying an existing algorithm. This kind of research can be said already reached their certain limitations for further improvements. In this study, aside from proposing a new algorithm or modifying the algorithm, we focus on searching a way to modify the use of data. It is widely known that classifier performance is influenced by the quality of training data upon which this classifier is built. The real world datasets in most of the time contain noise, or in other words noisy data, these can actually affect the decision made by the classifiers built from these data. In this study, we consider that the data from different domains, which is heterogeneous data might have the characteristics of noise which can be utilized in the classification process. In order to build the classifier, machine learning algorithm is performed based on the assumption that the characteristics of training data and target data are the same or very similar to each other. However, in the case of unstructured data such as text, the features are determined according to the vocabularies included in the document. If the viewpoints of the learning data and target data are different, the features may be appearing different between these two data. In this study, we attempt to improve the classification accuracy by strengthening the robustness of the document classifier through artificially injecting the noise into the process of constructing the document classifier. With data coming from various kind of sources, these data are likely formatted differently. These cause difficulties for traditional machine learning algorithms because they are not developed to recognize different type of data representation at one time and to put them together in same generalization. Therefore, in order to utilize heterogeneous data in the learning process of document classifier, we apply semi-supervised learning in our study. However, unlabeled data might have the possibility to degrade the performance of the document classifier. Therefore, we further proposed a method called Rule Selection-Based Ensemble Semi-Supervised Learning Algorithm (RSESLA) to select only the documents that contributing to the accuracy improvement of the classifier. RSESLA creates multiple views by manipulating the features using different types of classification models and different types of heterogeneous data. The most confident classification rules will be selected and applied for the final decision making. In this paper, three different types of real-world data sources were used, which are news, twitter and blogs.