• Title/Summary/Keyword: 강화 학습

Search Result 1,609, Processing Time 0.032 seconds

A Study on Performance Improvement of Evolutionary Algorithms Using Reinforcement Learning (강화학습을 이용한 진화 알고리즘의 성능개선에 대한 연구)

  • 이상환;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.420-426
    • /
    • 1998
  • Evolutionary algorithms are probabilistic optimization algorithms based on the model of natural evolution. Recently the efforts to improve the performance of evolutionary algorithms have been made extensively. In this paper, we introduce the research for improving the convergence rate and search faculty of evolution algorithms by using reinforcement learning. After providing an introduction to evolution algorithms and reinforcement learning, we present adaptive genetic algorithms, reinforcement genetic programming, and reinforcement evolution strategies which are combined with reinforcement learning. Adaptive genetic algorithms generate mutation probabilities of each locus by interacting with the environment according to reinforcement learning. Reinforcement genetic programming executes crossover and mutation operations based on reinforcement and inhibition mechanism of reinforcement learning. Reinforcement evolution strategies use the variances of fitness occurred by mutation to make the reinforcement signals which estimate and control the step length.

  • PDF

Design of Reinforcement Learning Controller with Self-Organizing Map (자기 조직화 맵을 이용한 강화학습 제어기 설계)

  • 이재강;김일환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.353-360
    • /
    • 2004
  • This paper considers reinforcement learning control with the self-organizing map. Reinforcement learning uses the observable states of objective system and signals from interaction of the system and environment as input data. For fast learning in neural network training, it is necessary to reduce learning data. In this paper, we use the self-organizing map to partition the observable states. Partitioning states reduces the number of learning data which is used for training neural networks. And neural dynamic programming design method is used for the controller. For evaluating the designed reinforcement learning controller, an inverted pendulum on the cart system is simulated. The designed controller is composed of serial connection of self-organizing map and two Multi-layer Feed-Forward Neural Networks.

Reinforcement Learning using Propagation of Goal-State-Value (목표상태 값 전파를 이용한 강화 학습)

  • Kim, Byeong-Cheon;Yun, Byeong-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.5
    • /
    • pp.1303-1311
    • /
    • 1999
  • In order to learn in dynamic environments, reinforcement learning algorithms like Q-learning, TD(0)-learning, TD(λ)-learning have been proposed. however, most of them have a drawback of very slow learning because the reinforcement value is given when they reach their goal state. In this thesis, we have proposed a reinforcement learning method that can approximate fast to the goal state in maze environments. The proposed reinforcement learning method is separated into global learning and local learning, and then it executes learning. Global learning is a learning that uses the replacing eligibility trace method to search the goal state. In local learning, it propagates the goal state value that has been searched through global learning to neighboring sates, and then searches goal state in neighboring states. we can show through experiments that the reinforcement learning method proposed in this thesis can find out an optimal solution faster than other reinforcement learning methods like Q-learning, TD(o)learning and TD(λ)-learning.

  • PDF

Reinforcement Learning Using State Space Compression (상태 공간 압축을 이용한 강화학습)

  • Kim, Byeong-Cheon;Yun, Byeong-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.633-640
    • /
    • 1999
  • Reinforcement learning performs learning through interacting with trial-and-error in dynamic environment. Therefore, in dynamic environment, reinforcement learning method like Q-learning and TD(Temporal Difference)-learning are faster in learning than the conventional stochastic learning method. However, because many of the proposed reinforcement learning algorithms are given the reinforcement value only when the learning agent has reached its goal state, most of the reinforcement algorithms converge to the optimal solution too slowly. In this paper, we present COMREL(COMpressed REinforcement Learning) algorithm for finding the shortest path fast in a maze environment, select the candidate states that can guide the shortest path in compressed maze environment, and learn only the candidate states to find the shortest path. After comparing COMREL algorithm with the already existing Q-learning and Priortized Sweeping algorithm, we could see that the learning time shortened very much.

  • PDF

A study on the Adaptive Neural Controller with Chaotic Neural Networks (카오틱 신경망을 이용한 적응제어에 관한 연구)

  • Sang Hee Kim;Won Woo Park;Hee Wook Ahn
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.41-48
    • /
    • 2003
  • This paper presents an indirect adaptive neuro controller using modified chaotic neural networks(MCNN) for nonlinear dynamic system. A modified chaotic neural networks model is presented for simplifying the traditional chaotic neural networks and enforcing dynamic characteristics. A new Dynamic Backpropagation learning method is also developed. The proposed MCNN paradigm is applied to the system identification of a MIMO system and the indirect adaptive neuro controller. The simulation results show good performances, since the MCNN has robust adaptability to nonlinear dynamic system.

  • PDF

Development of Interior Self-driving Service Robot Using Embedded Board Based on Reinforcement Learning (강화학습 기반 임베디드 보드를 활용한 실내자율 주행 서비스 로봇 개발)

  • Oh, Hyeon-Tack;Baek, Ji-Hoon;Lee, Seung-Jin;Kim, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.537-540
    • /
    • 2018
  • 본 논문은 Jetson_TX2(임베디드 보드)의 ROS(Robot Operating System)기반으로 맵 지도를 작성하고, SLAM 및 DQN(Deep Q-Network)을 이용한 목적지까지의 이동명령(목표 선속도, 목표 각속도)을 자이로센서로 측정한 현재 각속도를 이용하여 Cortex-M3의 기반의 MCU(Micro Controllor Unit)에 하달하여 엔코더(encoder) 모터에서 측정한 현재 선속도와 자이로센서에서 측정한 각속도 값을 이용하여 PID제어를 통한 실내 자율주행 서비스 로봇.

Design of A Remote Device Control System Using Reinforcement Learning in Software Defined Networks (소프트웨어 정의 네트워크에서 강화학습을 활용한 원격 디바이스 제어 시스템 설계)

  • Lim, Hyun-Kyo;Kim, Ju-Bong;Kim, Min-Suk;Hong, Yong-Geun;Han, Youn-Hee
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.139-142
    • /
    • 2018
  • 최근, Industry과 IoT 기기의 보급으로 인하여 수많은 센서와 액추에이터, 모바일 기기 등이 Cyber-Physical System을 통해 네트워크와 연결되며, 더 효율적인 시스템을 요규한다. 이를 위하여, EdgeX와 SDN을 활용하여 빠르고 효율적인 네트워크 서비스를 제공한다. 따라서 본 논문에서는 CPS 기반의 Reinforcement Learning을 활용한 Rotary Inverted Pendulum System을 통해 실시간으로 빠르고 안전한 네트워크 서비스를 제공할 수 CPS 아키텍처를 구현한다.

Competitive Learning Neural Network with Binary Reinforcement and Constant Adaptation Gain (일정적응 이득과 이진 강화함수를 갖는 경쟁 학습 신경회로망)

  • Seok, Jin-Wuk;Cho, Seong-Won;Choi, Gyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.326-328
    • /
    • 1994
  • A modified Kohonen's simple Competitive Learning(SCL) algorithm which has binary reinforcement function and a constant adaptation gain is proposed. In contrast to the time-varing adaptation gain of the original Kohonen's SCL algorithm, the proposed algorithm uses a constant adaptation gain, and adds a binary reinforcement function in order to compensate for the lowered learning ability of SCL due to the constant adaptation gain. Since the proposed algorithm does not have the complicated multiplication, it's digital hardware implementation is much easier than one of the original SCL.

  • PDF

Credit-Assigned-CMAC-based Reinforcement Learning with application to the Acrobot Swing Up Control Problem (Acrobot Swing Up 제어를 위한 Credit-Assigned-CMAC 기반의 강화학습)

  • Shin, Yeon-Yong;Jang, Si-Young;Seo, Seung-Hwan;Suh, Il-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.621-624
    • /
    • 2003
  • For real world applications of reinforcement learning techniques, function approximation or generalization will be required to avoid curse of dimensionality. For this, an improved function approximation-based reinforcement learning method is proposed to speed up convergence by using CA-CMAC(Credit-Assigned Cerebellar Model Articulation Controller). To show that our proposed CACRL(CA-CMAC-based Reinforcement Learning) performs better than the CRL(CMAC-based Reinforcement Learning), computer simulation results are illustrated, where a swing-up control problem of an acrobot is considered.

  • PDF

Deep Reinforcement Learning-based Distributed Routing Algorithm for Minimizing End-to-end Delay in MANET (MANET에서 종단간 통신지연 최소화를 위한 심층 강화학습 기반 분산 라우팅 알고리즘)

  • Choi, Yeong-Jun;Seo, Ju-Sung;Hong, Jun-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1267-1270
    • /
    • 2021
  • In this paper, we propose a distributed routing algorithm for mobile ad hoc networks (MANET) where mobile devices can be utilized as relays for communication between remote source-destination nodes. The objective of the proposed algorithm is to minimize the end-to-end communication delay caused by transmission failure with deep channel fading. In each hop, the node needs to select the next relaying node by considering a tradeoff relationship between the link stability and forward link distance. Based on such feature, we formulate the problem with partially observable Markov decision process (MDP) and apply deep reinforcement learning to derive effective routing strategy for the formulated MDP. Simulation results show that the proposed algorithm outperforms other baseline schemes in terms of the average end-to-end delay.