• Title/Summary/Keyword: 강합성

Search Result 930, Processing Time 0.025 seconds

Development of Corner-Supported Auto Climbing Formwork System (강합성코어벽을 활용한 코너지지형 거푸집시스템 개발)

  • Hong, Geon-ho;Shim, Woo-Kyung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.171-178
    • /
    • 2019
  • Auto Climbing Formwork System (ACS) for construction of high-rise building is a construction method for automatically lifting the formwork system supported by the anchor on the pre-constructed concrete wall. It has excellent construction speed and quality, but it has the possibility of structural failure depending on the quality of concrete and also has low economical efficiency due to the use of foreign technology. In order to overcome these problems, this study conducted an optimum design for the development of a new concept of Corner Supported Auto Climbing System (CS-ACS) in conjunction with the development of corner steel-reinforced concrete core wall system. For the design the formwork system, the basic module and structural member compositions were planned, and the structural analysis program was used to analyze the optimum member's cross section and spacing. As a result, the horizontal displacement and the stress of the horizontal members were influenced by the spacing more than the cross-section of the member. On the other hand, vertical members did not affect the displacement and stress of the formwork system. The form tie was very effective in controlling the displacement when adjusting the spacing of the horizontal members, but when the spacing of the form tie is more than 1,500mm, it is analyzed that form tie is yielding in basic module. When the span of the formwork system is more than 30m, it is analyzed that the basic module needs to be changed because of the increase of overall displacement.

Image Stitching focused on Priority Object using Deep Learning based Object Detection (딥러닝 기반 사물 검출을 활용한 우선순위 사물 중심의 영상 스티칭)

  • Rhee, Seongbae;Kang, Jeonho;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.882-897
    • /
    • 2020
  • Recently, the use of immersive media contents representing Panorama and 360° video is increasing. Since the viewing angle is limited to generate the content through a general camera, image stitching is mainly used to combine images taken with multiple cameras into one image having a wide field of view. However, if the parallax between the cameras is large, parallax distortion may occur in the stitched image, which disturbs the user's content immersion, thus an image stitching overcoming parallax distortion is required. The existing Seam Optimization based image stitching method to overcome parallax distortion uses energy function or object segment information to reflect the location information of objects, but the initial seam generation location, background information, performance of the object detector, and placement of objects may limit application. Therefore, in this paper, we propose an image stitching method that can overcome the limitations of the existing method by adding a weight value set differently according to the type of object to the energy value using object detection based on deep learning.

A Feasibility Study on Resilient Modulus of Expanded Polystyrene (EPS) Geofoam as a Flexible Pavement Subgrade Material (연성포장의 노반재료로서 EPS 지오폼의 회복탄성계수에 관한 적합성 연구)

  • Park, Ki-Chul;Chang, Yong-Chai
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.63-70
    • /
    • 2011
  • Expanded Polystyrene (EPS) is a type of geosynthetic material manufactured with various strengths, unit weights, and dimensions. Due to recent advances in research on EPS, the use of EPS has increased dramatically. This super light weight material has a unit weight of approximately $0.16{\sim}0.47kN/m^3$, equivalent to 6.3~15.7 of that of most natural soils with conditions of fill materials. In spite of this advantage, it is noted that no standard method of resilient modulus test on EPS geofoam was reported and no literature on resilient modulus test methods for EPS geofoam exist. The main object of this study was to investigate feasibility of the resilient modulus of EPS when it was applied for flexible pavement. The investigation of the feasibility was completed based on the results from triaxial tests.

Fabrication and Mechanical Properties of Nanostructured Al2O3-MgSiO3-SiO2 Composites Synthesized by Pulsed Current Activated Combustion of Mechanically Activated Powder (기계적 활성화된 분말로부터 펄스전류활성 연소합성에 의한 나노구조 Al2O3-MgSiO3-SiO2복합재료 제조 및 기계적 특성)

  • Shon, In-Jin;Kang, Hyun-Su;Doh, Jung-Mann;Yoon, Jin-Kook
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.565-569
    • /
    • 2011
  • Nanopowders of MgO, $Al_2O_3$ and $SiO_2$ were made by high-energy ball milling. The fast sintering of nanostructured $Al_2O_3-MgSiO_3-SiO_2$ composites was investigated from mechanically activated powders of MgO, $Al_2O_3$ and $SiO_2$ by a pulsed-current activated sintering process. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties; in particular greater strength, hardness, excellent ductility and toughness. Highly dense nanostructured $Al_2O_3- MgSiO_3-SiO_2$ composites were produced with simultaneous application of 80 MPa and pulsed output current of 2800A within 2 minutes. The sintering behavior, grain size and mechanical properties of $Al_2O_3-MgSiO_3-SiO_2$ composites were investigated.

Mechanical Properties and Fabrication of Nanostructured Mg2SiO4-MgAl2O4 Composites by High-Frequency Induction Heated Combustion (기계적 활성화된 분말로부터 고주파유도 가열 연소합성에 의한 나노구조 Mg2SiO4-MgAl2O4 복합재료 제조 및 기계적 특성)

  • Shon, In-Jin;Kang, Hyun-Su;Hong, Kyung-Tae;Doh, Jung-Mann;Yoon, Jin-Kook
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.614-618
    • /
    • 2011
  • Nanopowders of MgO, $Al_2O_3$ and $SiO_2$ were made by high energy ball milling. The rapid sintering of nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites was investigated by a high-frequency induction heating sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. Highly dense nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites were produced with simultaneous application of 80MPa pressure and induced output current of total power capacity (15 kW) within 2min. The sintering behavior, gain size and mechanical properties of $MgAl_2O_4-Mg_2SiO_4$ composites were investigated.

Rapid Synthesis and Sintering of Nanostructured MgTiO3 Compound by High-Frequency Induction Heating (고주파 유도 가열에 의한 급속 나노구조 MgTiO3 화합물 합성 및 소결)

  • Kang, Hyun-Su;Doh, Jung-Mann;Yoon, Jin-Kook;Park, Bang-Ju;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.891-896
    • /
    • 2012
  • Nanopowders of MgO and $TiO_2$ were made by high energy ball milling. The rapid synthesis and sintering of the nanostructured $MgTiO_3$ compound was investigated by the high-frequency induction heated sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. A highly dense nanostructured $MgTiO_3$ compound was produced with simultaneous application of 80 MPa pressure and induced current within 2 min. The sintering behavior, gain size and mechanical properties of $MgTiO_3$ compound were investigated.

Shielding Effectiveness Analysis of the Digital Module Storage Cabinet for Nuclear Power Plants According to the Internal Structure and the Angle of EM wave Incidence (내부구조와 전파 입사각에 따른 원전용 디지털 모듈 보관 캐비닛의 차폐효과 분석)

  • Youn, Sang-Woon;Jang, Do-Young;Choo, Ho-Sung;Kim, Young-Mi;Lee, Jun-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In this paper, the cabinet shielding effectiveness (SE) including digital modules for nuclear power plants is analyzed depending on the internal structure and electromagnetic (EM) wave incidence angle. To analyze the SE, the cabinet and modules are modeled using the FEKO EM simulation tool. The SE is then obtained by comparing the electric field with and without the cabinet. In addition, the cabinet SE is observed by changing various conditions such as the spacing of each digital module, incidence angle, and the polarization of the EM wave at the 2.4 G[Hz frequency. To verify the results, the dipole antenna for SE measurements is fabricated, and the SE is measured in a semi-anechoic chamber. The result demonstrates that the SE by the cabinet structure can be expected to be higher when the polarization of the incident EM wave is horizontal to the ground and the distance between the digital modules is wide.

Bacterial Cellulose Membrane for Wastewater Treatment: A Review (폐수 처리를 위한 박테리아 셀룰로오스 막: 리뷰)

  • Jang, Eun Jo;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.384-392
    • /
    • 2021
  • Growing pollution due to industrialization leads to difficulties in survival of mankind. Generation of clean water from wastewater by membrane separation process is emerging cost efficient technology. Membrane prepared from renewable resources are in lots of demand to reduce burden on synthetic polymers which is one of the source of environmental pollution. Bacterial cellulose (BC) is very pure and distinct form of cellulose nanofibrils (CNF). Nanopapers prepared from CNF are used ad ultrafiltration (UF) and nanofiltration (NF) membrane for different applications. High crystallinity of BC gives rise to excellent mechanical property, an essential criterion for wastewater treatment membrane. In this review, BC based membrane for application in dye, oil, heavy metal and chemical removal from wastewater is discussed.

Effect of Stitching Range on Radiation Dose to Eyeball, Thyroid, Breast, Pelvis in Whole Spine Radiography with Standing Position (선 자세 척추 전장 방사선검사 시 스티칭 범위가 장기(수정체, 갑상샘, 유방, 골반부)의 선량에 미치는 영향)

  • Min-Ji, Hong;Han-Yong, Kim;Dong-Hwan, Kim;Young-Cheol, Joo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.47-52
    • /
    • 2023
  • In whole spine radiography using the stitching technique, overlapping parts occur in the process of synthesizing the three segmented images, so some anatomical structures may be repeatedly exposed, and it has been thought that the dose increases as the scan range increases. However, in the whole spine radiography using the stitching technique in this study, under the condition that the stitching range is taken in the same three splits, the overlapping area decreases as the stitching range increases, so in the case of breasts included in the overlapping range, the dose value decreased by almost half as the stitching range increased from 90 cm to 105 cm. During spinal full-length radiological examination using the stitching method, an appropriately long stitching range could be set to reduce the exposure dose of the breast.

Seasonal Variation of Phytoplakton and Phylogenetic Characteristics of Cyanotoxin synthetase genes within Youngsan River in Gwangju (광주지역 영산강 내 식물플랑크톤의 계절적 변동과 남조류 독소합성유전자의 계통발생학적 특성)

  • Haram Kim;Gwangwoon Cho;Gyeongrok Son;Dong, Jang;Gwangyeob Seo;Yunhee Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.315-328
    • /
    • 2023
  • Cyanobacteria have been used as pollution indicator species in freshwater ecosystems, and identifying their fluctuations can be an important part about management of surface waters globally. Cyanotoxins produced by cyanobacteria are directly or indirectly a threat to human and environmental health. In order to confirm the potential risk of these cyanotoxins, the fluctuations of phytoplankton and phylogenetic analysis of cyanotoxin synthetase genes were conducted at each point in the Yeongsan River water system in Gwangju from November 2021 to October 2022. Diatoms which grow well in winter were dominant at 99.4 ~ 99.5%, and diatoms and green algae were dominant from the spring to autumn when the water temperature rises. Stephanodiscus spp. were dominant at 92.7 to 97.5 % at all sites in the winter, and Aulacoseira spp., which grow in warm water temperatures, were dominant in summer and autumn. Microcystis aeruginosa was dominant at 25.2% in summer only at site 5. mcyB and anaC have been detected as cyanotoxin synthetase genes. The phylogenetic tree of anaC could be divided into two groups (Group 1 & Group 2). Group 1 contained Aphanizomenon sp. and Cuspidothrix issatschenkoi. It is combined with Aphanizomenon sp. and Cuspidothrix issatschenkoi, which are known to produce cyanotoxins.