• 제목/요약/키워드: 강한 에지

검색결과 44건 처리시간 0.024초

회화적 렌더링을 위한 에지 기반 동적 브러시 스트로크 생성에 관한 연구 (Edge Based Dynamic Brush Stroke Generation for Painterly Rendering)

  • 박영섭;윤경현
    • 한국멀티미디어학회논문지
    • /
    • 제8권2호
    • /
    • pp.164-173
    • /
    • 2005
  • 회화적 렌더링은 색상, 방향, 크기 그리고 모양 등 브러시 스트로크의 특징을 결정하는 파라미터들에 의해서 다양한 결과를 만들어 낼 수 있다. 본 논문에서는 참조 데이터를 이용하여 소스 영상에 가장 적합한 브러시 스트로크 생성에 관한 방법을 제안하고자 한다. 색상은 실제로 화가들이 사용한 팔레트 색상을 생성하여 이용하였다. 팔레트를 생성하기 위하여 본 논문에서는 특정화가(특히, 고흐)의 작품에서 주로 사용된 색상을 참조하였으며 소스 영상에서 사용된 색상과 생성된 팔레트 색상을 비교하여 가장 비슷한 색상으로 색상을 변환하여 브러시 스트로크의 색상을 결정하였다. 방향은 반 고흐 스타일 같은 동적인 방향성을 가지는 브러시스트로크를 표현하기 위해 소스 영상의 에지방향을 참조 데이터로 사용하여 에지 주변의 브러시 스트로크의 방향을 보간하는 방법을 적용하였다. 크기는 그리고자 하는 대상의 크기에 따라 각 레이어 별로 폭이 큰 브러시에서 작은 브러시 순으로 결정하였다. 마지막으로, 모양은 소용돌이치는 듯한 반 고흐 스타일을 표현하기 위해 스플라인 곡선을 적용하였다. 이런 방법으로 만들어진 브러시 스트로크는 영영 분할된 각 레이어별로 적용하였으며 렌더링 후에 각 레이어를 합성하였다.

  • PDF

그레디언트 히스토그램을 이용한 정합 창틀 크기의 자동적인 결정 (Automatic Determination of Matching Window Size Using Histogram of Gradient)

  • 예철수;문창기
    • 대한원격탐사학회지
    • /
    • 제23권2호
    • /
    • pp.113-117
    • /
    • 2007
  • 본 논문에서는 1m 해상도의 위성 영상에서 스테레오 정합의 성능을 향상시키기 위해 그레디언트 히스토그램을 이용하여 정합 창틀의 크기를 자동적으로 결정하는 방법을 제안한다. 영상의 각 화소에 대해 4-neighbor에 위치한 화소의 수평 또는 수직 방향의 평균 그레디언트 값을 계산하여 평탄화 지수 영상(Flatness Index Image)을 생성한다. 강한 에지 화소는 높은 평탄화 지수를 가지며 반면에 비에지 화소의 경우에는 낮은 평탄화 지수를 가진다. 평탄화 지수 영상의 히스토그램을 이용하여 각 화소의 에지 또는 비에지 화소 여부를 결정하는 평탄화 임계값을 구한다. 각 화소의 평탄화 지수가 평탄화 임계값보다 크면 에지화소로, 작으면 비에지 화소로 분류한다. 초기 정합 창틀 내에 존재하는 비에지 화소의 비율이 작으면 밝기 값 변화가 적은 영역으로 판정하고 정합 창틀의 크기를 더 크게 설정하고 이 과정을 정합 창틀이 최대 크기에 도달할 때까지 반복적으로 수행한다. IKONOS 스테레오 위성영상을 실험영상으로 사용하였으며 고정크기의 정합 창틀을 이용한 방법에 비해 향상된 정합 결과를 얻었다.

평균 및 위너 필터를 사용한 영상 복원에 관한 연구 (A Study on Image Restoration using Mean and Wiener Filter)

  • 문홍득;강경덕;배상범;김남호
    • 한국정보통신학회논문지
    • /
    • 제8권7호
    • /
    • pp.1393-1398
    • /
    • 2004
  • 영상은 획득, 저장 그리고 전송 등의 처리과정에서 다양한 원인에 의해 훼손되며, 이러한 영상을 복원하기 위한 많은 연구가 이루어지고 있다. 일반적으로 AWGN(additive white gaussian noise)에 의해 훼손된 영상을 복원하는 방법으로 평균 필터와 위너 필터가 있으며, 특히 평탄한 영역에서의 노이즈 제거에 평균 필터가 우수하다. 그러나 평균 필터는 영상의 특징을 고려하지 않으므로 에지 성분이 왜곡되어 평활화되는 단점이 있다. 따라서 본 논문에서는 평균 필터와 함께 에지 성분을 보존하면서 대조도 개선에 강한 위너 필터를 사용하여 각각 필터링한 후, 처리된 영상에 가중치를 설정하여 병렬처리하는 영상 복원 방법을 제안하였다.

잡음영상에 강한 IPC(Interlace to Progressive Conversion) 알고리즘 (Error Resilient IPC Algorithm for Noisy Image)

  • 김영로;홍병기
    • 전자공학회논문지 IE
    • /
    • 제45권3호
    • /
    • pp.13-19
    • /
    • 2008
  • 본 논문은 신뢰할 수 있는 에지 방향을 이용한 새로운 IPC(Interlace to Progressive Conversion) 방법을 제안한다. 기존의 IPC에 사용되는 ELA(Edge Line based Average) 알고리즘들은 잡음에 대한 고려가 없이 보간하고자 하는 에지 방향의 화소들을 선형보간 한다. 그러나 영상에 잡음이 존재할 경우, 잡음에 의해 잘못된 에지 방향을 찾아 열화된 영상을 얻을 수 있다. 본 논문에서 제안하는 방법은 기존 ELA 알고리즘이 잡음 영상에서 IPC할 때 생기는 문제점을 개선하는 알고리즘이다. 먼저 잡음을 제거하는 필터링과 동시에, 잡음이 없는 원화소의 색상 크기와 잡음의 크기를 추정한다. 이에 따라 잡음의 크기를 고려하여 ELA 방법과 수직보간 방법에 가중치를 주어 보간 값을 구한다. 이 후 잡음이 존재할 경우 포스트 필터링(Post Filtering)을 거쳐 잔재해 있는 잡음을 제거해준다. 실험결과에서 제안하는 알고리즘이 기존 ELA 알고리즘들 보다도 약 $1{\sim}2$ dB 향상된 결과를 보인다.

명암변화에 강한 웨이블릿 변환 기반의 얼굴검출 (Wavelet Transform based Robust Face Detection)

  • 조치영;김수환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.489-492
    • /
    • 2005
  • 본 논문은 웨이블릿 변환 특성을 기반으로 조명의 영향을 표현하는 표준 영상 왜곡 모델을 구축하여 조명 및 기타 영상의 왜곡에 강한 얼굴검출 기법을 제시한다. PC카메라 환경에서와 같이 입력 영상의 명암왜곡이 지속적으로 존재하는 응용에서는 히스토그램 평활화, 명세화와 같은 기존의 명암도 보정 방법으로는 효율적인 얼굴탐색이 어렵다. 따라서 입력 영상의 왜곡정보를 분석하고 이 정보가 입력 영상의 보정에 사용될 수 있다면 효율적인 얼굴검출이 수행될 수 있을 것이다. 본 논문에서는 입력 영상의 웨이블릿 변환으로 얻어진 각 고주파 영역의 픽셀을 조사하여 원 영상의 가로, 세로, 대각선 방향의 에지 정보를 분석함으로써 현재 입력된 영상의 명암 상태를 확인하고, 얼굴특징요소 중 눈을 기준으로 검출을 수행하여 아주 어둡거나 밝은 환경에서도 얼굴검출 성능을 높이도록 한다.

  • PDF

이분 그래프인 이중 루프 네트워크의 고장 해밀톤 성질 (Fault-hamiltonicity of Bipartite Double Loop Networks)

  • 박정흠
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제31권1_2호
    • /
    • pp.19-26
    • /
    • 2004
  • 이 논문에서는 정점이나 에지 고장이 있는 이중 루프 네트워크에서 임의의 두 정점을 연결하는 고장 없는 최장 경로를 고찰하여, 고장인 요소의 수가 둘 흑은 그 이하인 경우 이분 그래프인 이중 루프 네트워크 G(mn;1, m)은 강한 해밀톤 laceable 그래프임을 보인다. G(mn;1, m)은 m이 홀수이고 n이 짝수일 경우에만 이분 그래프이다.

레벨셋 기반 꽃 분할을 위한 노이즈 제거 (Noise Removal for Level Set based Flower Segmentation)

  • 박상철;오강한;나인섭;김수형;양형정;이귀상
    • 스마트미디어저널
    • /
    • 제1권2호
    • /
    • pp.34-39
    • /
    • 2012
  • 본 연구에서는 노이즈를 제거하고 자연 영상에서 자동으로 꽃을 분할하는 후처리방법을 제시한다. 레벨 셋 알고리즘을 이용한 자연영상 꽃 분할에서는 레벨 셋이 에지 정보에만 의존하기 때문에 기대하지 않았던 분리된 노이즈들이 발생한다. 실험 결과는 제안 방법이 꽃 영역과 배경 영역의 많은 노이즈를 성공적으로 제거하였음을 보여준다.

  • PDF

MPEG-4 기반의 능동윤곽모델을 이용한 스테레오 영상에서의 객체분할에 관한 연구 (A Study on the Object Segmentation Using Active Contour Model based MPEG-4)

  • 김신형;전병태;박두영;장종환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.57-60
    • /
    • 2002
  • 본 논문에서는 능동윤곽모델(active contour model)의 잘 알려져 있는 스네이크(snake) 알고리즘을 스테레오영상에 적용하여 좌 우 영상의 disparity 정보를 이용 객체의 경계선을 찾는 알고리즘을 제안한다. 스네이크는 객체의 경계를 얻기 위해 에지정보를 사용하는데 실제 이미지에서 객체의 경계가 아닌 인접한 주위의 강한 애지(edge)에 대해서도 영향을 받게 되는 문제가 있다. 이러한 문제를 해결하기 위해 스테레오영상의 disparity 정보를 이용하여 이를 개선하고 disparity 측정에 사용되는 블록매칭(block matching)방법을 스네이크 알고리즘에 적용시켰다.

  • PDF

에지기반 세그먼트 영상 생성에 의한 차량 번호판 인식 시스템 (Vehicle License Plate Recognition System By Edge-based Segment Image Generation)

  • 김진호;노덕수
    • 한국콘텐츠학회논문지
    • /
    • 제12권3호
    • /
    • pp.9-16
    • /
    • 2012
  • 스마트시티 프로젝트의 일환으로 실시간 차량 번호판 인식에 관한 연구들이 활발하게 진행되고 있다. 도로상에 설치된 CCTV에서 트리거 신호 없이 주행하는 차량 영상을 획득할 경우에는 번호판의 기하학적 왜곡이나 화질의 저하가 발생하여 번호판 인식이 어려워 질 수 있다. 본 논문에서는 트리거 신호를 이용하지 않은 상태에서 입력되어 기하학적 왜곡이나 화질의 저하가 발생된 차량 영상에도 강한 에지기반 문자 세그먼트 영상생성 기법의 차량 번호판 인식시스템을 제안하였다. 제안한 실시간 차량 번호판 인식 알고리즘을 도로상에 설치된 CCTV에 구현하고 일주일 동안 번호판 인식 실험을 수행해 본 결과 1일 평균 1,535 대의 통과 차량에 대해서 97.5%의 번호판 검출률을 얻을 수 있었으며 검출된 번호판에 기록된 문자들의 99.3%를 인식할 수 있었다.

스크린 이미지 부호화를 위한 에지 정보 기반의 효과적인 형태학적 레이어 분할 (Effective Morphological Layer Segmentation Based on Edge Information for Screen Image Coding)

  • 박상효;이시웅
    • 한국콘텐츠학회논문지
    • /
    • 제13권12호
    • /
    • pp.38-47
    • /
    • 2013
  • 다중 레이어 영상 모델인 Mixed Raster Content 모델 (MRC) 기반의 영상 부호화는 스크린 이미지와 같은 혼합 영상을 전경 레이어, 이진 마스크 레이어, 배경 레이어로 재구성한 뒤, 각 레이어마다 그 레이어의 신호 특성에 적합한 부호화기를 이용하여 영상을 압축하는 기법이다. 문자와 같은 계단 형태의 강한 에지를 갖는 영역의 위치 정보를 마스크 레이어에 저장하고, 그 위치의 색상 신호는 전경 레이어에 저장한다. 그리고 나머지 영역인 배경 영역의 색상 신호는 배경 레이어에 저장한다. 따라서 마스크 레이어가 전경과 배경의 분할 정보를 담게 되며, 이 분할 정보의 정확도에 따라 전체 부호화기의 압축 효율이 직접적인 영향을 받는다. 본 논문은 MRC 기반의 영상 부호화를 위한 새로운 레이어 분할 알고리즘을 제안한다. 제안 방법은 형태학적 필터인 top hat 변환을 이용하여 문자를 배경신호로부터 분할한다. 이때 문자의 경계를 에지 맵으로부터 추정하여 문자 색상과 배경과의 상대적 밝기를 결정하고 이를 통해 형태학적 필터링에 필요한 top hat 변환의 종류를 정확히 선택하도록 하였다. 실험을 통해 제안 방법이 비교 대상 알고리즘에 비해 우수한 분할 성능을 가짐을 보인다.