• Title/Summary/Keyword: 강체역학

Search Result 76, Processing Time 0.02 seconds

반디호 복합재 착륙장치의 착륙특성에 관한 해석

  • Choi, Sun-Woo;Park, Il-Kyung
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.15-20
    • /
    • 2005
  • Most of studies for the ground load and ground behavior of landing gear have been conducted with an assumption that the structure of landing gear was rigid body. The assumption of rigid body during design process results in many errors or discrepancy. High ground load occurs in 3 directions on the shock absorbing strut during landing. This ground load initiated high structural deformation. In this study, the flex-multi-body dynamics is applied to adapt flexible bodies, so the results of analysis can be described close to landing gears real behaviour.

  • PDF

Resolving the Inconsistency of Rigid Body Frictional Mechanics $-L\ddot{o}tstedt$'s Sliding Rod (마찰력이 개재된 강체역학에서 불일치의 해소 $-L\ddot{o}tstedt$의 미끄러지는 막대)

  • 한인환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.866-875
    • /
    • 1994
  • The problem of a rigid rod sliding on a rough horizontal surface in the plane is analyzed, which is commonly cited as an example of the inconsistency of rigid body frictional mechanics. The inconsistency is demonstrated by analyzing the normal reaction force at the contact point with the surface, and the concept of tangential collision is derived to resolve the inconsistency. Using the Poisson's hypothesis for the coefficient of restitution and Coulomb's law for the friction, the general methodology for solving the tangential collision is presented. The problem of the inconsistency generated in the sliding rod is completely resolved, building the concept of the tangential collision and adopting the theory of frictional impact. The result presented in this paper will obviate a generic obstacle to the development of simulation packages for planar rigid body mechanical systems with temporary contacts, and planning efficient motion strategies for robot manipulators.

Physically-Based Objects Interaction in Augmented Reality Environments (물리기반 모델링을 이용한 증강현실에서의 효과적 객체 상호작용)

  • Lee, Min-Kyoung;Kim, Young-J.;Redon,, Stephane
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.89-95
    • /
    • 2007
  • 본 논문에서는 연속적 충돌검사 방법과 제약 조건 기반의 강체 역학 모델링 기법을 이용하여 마커 기반의 트래킹 환경에서 현실의 객체와 가상의 객체가 물리적으로 현실적이고 안정적으로 상호작용하는 증강현실 방법을 제안한다. 본 논문에서 구현된 증강 현실 시스템은 증강 현실환경상의 현실 객체를 인식하고 트래킹 하는 부분과 증강현실에 등장하는 모든 종류의 객체들 간의 물리적인 상호작용을 시뮬레이션 하는 부분으로 크게 구성된다. 객체 트래킹에 사용되는 일반적인 카메라로는 적은 수의 불연속적인 프레임 밖에 얻을 수 없는 성능의 근본적인 한계에도 불구하고, 본 논문에서는 연속적 충돌검사 방법을 이용하여 객체간의 올바른 충돌 정보를 얻을 수 있었고, 이를 이용하여 제약 조건 기반의 강체 역학 시뮬레이션을 적용하여 안정적이고 현실적인 물리 반응을 생성할 수 있었다. 제안한 방법론은 이러한 트래킹 지연에도 불구하고 본 논문에서 사용된 다양한 벤치마킹 시나리오에서, 안정적으로 현실의 객체와 가상의 객체 사이에 물리적으로 실감나는 인터랙션 결과를 보여주었다.

  • PDF

나선이론에 의한 로봇의 운동 및 역학적 해석

  • 최용제
    • Journal of the KSME
    • /
    • v.31 no.7
    • /
    • pp.616-625
    • /
    • 1991
  • 운동하는 임의 강체의 순간속도는 플뤼커의 축좌표에 의한 트위스트로 표현될 수 있고 마찬가 지로 직렬형 로봇의 손의 운동 또한 한 개의 트위스트로써 순간속도를 표현할 수 있었으며, Jacobian이 나선좌표로 구성되어 있음을 알았다. 한편, 강체에 작용하는 힘은 플뤼커의 방사좌 표에 의한 치로 표현될 수 있으며, 역관계에 있는 두 나선에 의하여 표현된 트위스트와 치가 로봇의 역학적 해석에 어떻게 이용되는 가를 예를 들어 설명하였다. 이처럼 나선이론은 다 자 유도를 갖는 로봇의 운동 및 역학적 해석에 이용될 수 있는 효과적인 수학적도구라 할 수 있다. 나선은 하나의 기하적 요소이며, 복잡한 강체의 운동을 표현함에 있어서 간편함을 제공한다. 이미 한 세기 전 쯤에 소개된 나선이론이 근래에 와서 이와 같이 로봇의 운동해석에 활용되고 있음은 이러한 때문이라 할 수 있겠다. 나선이론은 이 글에서 설명이 생략된 로봇의 동역학적 해석에도 활용되며, 또한 병렬형 구조를 갖는 로봇(parallel robots)의 해석 등에서도 찾아 볼 수 있다.

  • PDF

Development of a Dynamic Simulation Program Including a Wheel-Rail Contact Module (휠-레일 접촉모듈을 포함한 동역학 해석 프로그램 개발)

  • Cho, Jae-Ik;Park, Tae-Won;Yoon, Ji-Won;Lee, Soo-Ho;Jung, Sung-Pil
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • Various programs for dynamic simulation of the railway vehicle have advantages and disadvantages. These programs have limitation that cannot express a large deformable body for an wire of the railway vehicle. In this study, a program for dynamic simulation of the railway vehicle is developed. And the rigid, flexible and large deformable body can be simulated using this program. Its reliability is verified by comparison with a commercial program. Also, a wire is considered as the large deformable body and a sliding joint which connects the rigid body to the large deformable body is included. Moreover, as the wheel-rail contact module is added, the dynamic simulation of the railway vehicle can be analyzed using the developed program.

A Three Dimensional Wheelset Dynamic Analysis considering Wheel-rail Two Point Contact (차륜-레일 2점 접촉을 고려한 3차원 윤축 동역학 해석)

  • Kang, Ju-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Wheelset dynamic analysis is a key element to determine the degree of accuracy of railway vehicle dynamics. In this study, a three-dimensional wheelset dynamic analysis is presented in such a way that the precise wheel-rail contact analysis in three-dimension is implemented into the dynamic equations of a wheelset. A numerical procedure that can be used for the analysis of a wheelset dynamics when the wheel-rail two point contact occurs in a cornering maneuver is developed. Numerical solutions of the constraint equations and the dynamics equations of a wheelset are achieved by using Runge-Kutta method. The proposed wheelset dynamic analysis is validated by comparison against results obtained from VI-RAIL analysis.

A Constraint-based Technique for Real-Time Game Physics Engine (제약 조건 기반의 실시간 게임 물리엔진 제작기법)

  • Lee, Min-Kyoung;Kim, Young-J.
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.174-177
    • /
    • 2008
  • In 3D gaming environment, it is important to simulate the physically plausible behaviors of gaming objects in real time. In particular, rigid body dynamics consists in the heart of most game physics. In this paper, we present a constraint-based rigid body simulation method using continuous collision detection as a collision detection method, and LCP formulation as a collision response method. The continuous collision detection method never misses any collisions and thus is able to accurately report the first time of collision as well as its associated colliding features. Moreover, since the number of colliding features is typically low, it also reduces the complexity in the LCP formulation.

  • PDF

A Dynamics Model of Rotor Blades for Real-time Simulation of Helicopters (실시간 헬리콥터 시뮬레이션을 위한 회전 깃의 역학적 모델)

  • Park, Su-Wan;Ryu, Kwan-Woo;Kim, Eun-Ju;Baek, Nak-Hoon
    • The KIPS Transactions:PartA
    • /
    • v.14A no.5
    • /
    • pp.255-262
    • /
    • 2007
  • Physically-based researches on simulating helicopter motions have been achieved in the field of aeronautics, aerodynamics and others. These results, however, have not been appled in the computer graphics area, mainly due to their complex equations and heavy computations. In this paper, we propose a dynamics model of helicopter rotor blades, which would be easy to implement, and suitable for real-time simulations of helicopters in the computer graphics area. Helicopters fly by the forces due to the collisions between air and rotor blades. These forces can be interpreted as the impulsive forces between the fluid and the rigid body. Based on these impulsive forces, we propose an approximated dynamics model of rotor blades, and it enables us to simulate the helicopter motions using existing rigid body simulation methods. We compute forces due to the movement of rotor blades according to the Newton's method, to achieve its real-time computations. Our prototype implementation shows real-time aerial navigation of helicopters, which are murk similar to the realistic motions.

An Improved Dynamics Model for Stone Skipping Simulation (물수제비 시뮬레이션을 위한 개선된 동역학 모델)

  • Lee, Nam-Kyung;Baek, Nak-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1382-1390
    • /
    • 2010
  • We can see interactions between rigid body and fluid every day, anywhere. This kind of rigid body-fluid simulation is one of the most difficult problems in physically-based modeling, mainly due to heavy computations. In this paper, we present a real-time dynamics model for simulating stone skipping, which is a popular rigid body-fluid interaction in the real world. In comparison to the previous works, our improved dynamics model supports the rotation of the stones and also computes frictional forces with respect to the air. We can simulate a realistic result for various user input by using proposed model. Additionally, we present a water surface model to show more realistic ripples interactively. Our methods can be easily adapted to other interactive dynamics systems including 3D game engines.

Dynamic analysis of railway vehicle by using track coordinates (트랙 좌표계를 이용한 철도차량 운동 해석)

  • Kang, Ju-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.818-823
    • /
    • 2011
  • 6-generalized coordinates of absolute translational displacements and angular displacements measured at Cartesian coordinates system fixed at the ground has been used to describe general dynamic behavior of a rigid body in mechanical systems. However, track coordinates system moving with the centerline of the track can be used to develop dynamic formulations for railway vehicle. It is easy to impose the constraints of track coordinates by the virtue of track coordinates system moving with track centerline. In this analysis, dynamic equations of railway vehicle by using track coordinates system is derived and the simulation results are presented.

  • PDF