• Title/Summary/Keyword: 강제대류증발

Search Result 7, Processing Time 0.021 seconds

Forced convective boiling heat transfer for a ternary refrigerant mixture inside a horizontal tube (수평관내 3성분 혼합냉매의 강제대류비등 열전달)

  • 오종택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.912-920
    • /
    • 1999
  • The forced convective boiling heat transfer coefficients of R-407C were measured inside a horizontal tube 6.0mm I.D. and 4.0m long. The heat transfer coefficients increased according to an increase in heat flux at constant mass flux. Because nucleation was completely suppressed in the two-phase flow region with high quality, heat transfer coefficients in forced convective evaporation were higher than those in nucleate boiling region. Average heat transfer coefficients of R-407C were about 30 percent lower than the pure refrigerant correlation, due to mass transfer resistance at the gas-liquid interface. However, the total experimental data shows an agreement with the predicted data for ternary refrigerant mixtures with a mean deviation of 30%.

  • PDF

Forced Convective Evaporating Heat Transfer of Non-azeotropic Refrigerant Mixtures in a Horizontal Smoothed Tube (수평 평활관내에서 비공비혼합냉매의 강제대류 증발열전달)

  • Park, K.W.;Oh, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.225-233
    • /
    • 1995
  • Experiments were performed to investigate the heat transfer characteristics of nonazeotropic mixture R-22+R-114 in a heat pump system. The ranges of parameter, such as heat flux, mass flow rate, and quality were $8,141{\sim}32,564W/m^2$, 24~58kg/h, and 0~1, respectively. The overall compositions of the mixtures were 50 and 100 per-cent of R-22 by weight for R-22+R-114 mixture. The results indicated that there were distinct different heat transfer phenomena between the pure substance and the mixture. In case of pure refrigerant the heat transfer rates for cooling were strongly dependent upon quality of the refrigerant. Overall evaporating heat transfer coefficients for the mixture were somewhat lower than pure R-22 values in the forced convective boiling region. For a given flow rate, the heat transfer coefficient at the circumferential tube wall(top, side, and bottom of the test tube) for R-22/R-114(50/50wt%)mixture, however, was higher than for pure R-22 at side and bottom of the tube. Furthermore, a prediction for the evaporating heat transfer coefficient of the mixtures was developed based on the method of Yoshida et.al.'s. The resulting correlation yielded a good agreement with the data for the refrigerant mixtures.

  • PDF

Analysis of Fuel Droplet Vaporization at High-Pressure Environment (고압상태에서의 연료액적의 증발특성 해석)

  • Lee, J.C.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 1996
  • A vaporization model for single component fuel droplet has been developed for applying to sub- and supercritical conditions. This model can account for transient liquid heat ins and circulation effect inside the droplet, forced and natural convection, Stefan flow effect, real gas effect and ambient gas solubility into the liquid droplet in high-pressure conditions. Thermodynamic and transport properties are calculated as functions of temperature and pressure in both phases. Numerical calculations are carried out for several validation cases with the detailed experimental data. Numerical results confirm that this supercritical vaporization model is applicable to the high-pressure conditions encountered in the combustion processes of diesel engine.

  • PDF

A Study for Evaporation Heat Transfer Characteristic of R22/Rl14 Refrigerant Mixtures in a Horizontal Tube (수평증발관내 R22/R114 혼합냉매의 열전달 특성에 관한 연구)

  • 윤치한;이종인;하옥남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.502-510
    • /
    • 2000
  • Evaporation heat transfer characteristics were studied in a horizontal tube using R22/R114 non-azotropic refrigerant mixture. the heat transfer coefficient was high in the upper part for pure refrigerants, and heat transfer coefficient was low in the lower part for refrigerant mixtures. In the low quality region where nucleate boiling was dominant, the average heat transfer coefficient was low. In the region where forced convection was dominant, heat transfer coefficient was high. Results show that the heat transfer coefficient for pure refrigerants obtained by experiments were lower than those of Yoshida et al. but agreed well with Jung et al., and Chen et al. data. But the heat transfer coefficients for refrigerant mixtures were lower about 20% than those predicted by the equation for pure refrigerant.

  • PDF

A study on flow characteristic of a stand type Kimchi refrigerator for optimum design of air flow passage (서랍식 김치냉장고의 최적 유로 설계를 위한 유동특성에 관한 연구)

  • Han, H.R.;Jung, H.Y.;Park, Y.K.;Choi, Y.H.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.37-42
    • /
    • 2011
  • The normal cooling system of a refrigerator is applied to indirect a cooling methods. But the Kimchi refrigerator is applied to direct the cooling method. Recently when the model was applied to both direct and indirect the cooling methods, the improvement was considerable. With the development of the living standards in Korea, there has been more sensitive dissatisfaction about the taste and the smell of Kimchi. In order to solve these kinds, there is a need to systematic and scientific approach. Based on these, the purpose of this study is to optimize design for improve the storage period of Kimchi refrigerator. In this research, we concentrate on the temperature change and heat transfer characteristics of interior parts of the Kimchi refrigerator due to control cycle of temperature and flow phenomenon of cooling air.

CFD procedure of Multi-phase flow to predict the trend of Boil-off for the various filling ratio of C-Type liquefied hydrogen tank subject to sloshing motion (슬로싱에 놓인 C-Type 액화수소 탱크의 적재율에 따른 BOG 발생량 경향 예측을 위한 다상 유동 CFD 해석 절차)

  • Jin-Ho Lee;Sung-Je Lee;Se-Yun Hwang;Jang Hyun Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.213-213
    • /
    • 2022
  • 본 논문은 슬로싱(Sloshing) 거동에 놓인 극저온 액체수소 화물창의 BOG 예측을 위한 CFD 해석 절차를 다루고 있다. 특히, 적재율(Filling Ratio)에 따라 달라지는 열 유입과 그에 따른 액체수소의 기화 경향을 파악하기 위한 목적으로 수행되었다. 액체수소와 기체수소의 혼재에 의한 다상 열유동(Multiphase-Thermal flow) 특성을 반영하고 유동에 따른 강제 대류 현상을 열유속에 반영하기 위한 CFD 해석을 수행하였다. 다상 유동 모델의 정확성을 검증하기 위하여 슬로싱 실험의 압력 계측 값과 해석의 압력 값 및 자유수면(Free surface) 형상을 비교하였다. 소형 C-Type 독립형 액화수소 탱크를 대상으로 슬로싱 유동과 BOG 발생을 수치적으로 예측하였다. 해석 과정에서 VOF(Volume of fraction) 모델과 Eulerian 모델을 모두 적용하여, 액체수소에 유입되는 열 유속(Heat flux)의 예측 정확성을 비교하였다. 슬로싱 유무에 따라 액체수소에 유입되는 열 유속을 비교하여 슬로싱 유동의 포함 여부에 따른 BOG 발생량의 변화를 제시하였으며, 최종적으로 액체수소의 충전율(Filling ratio) 별로 BOG 발생량의 경향성을 제시하였다.

  • PDF

An Experimental Study on Radiation/Convection Hybrid Air-Conditioner (복사-대류 겸용 하이브리드 냉방기에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.288-296
    • /
    • 2019
  • Radiation cooling has used ceilings or floors as cooling surfaces. In such cases, to avoid moisture condensation on the surface, the surface temperature needs be higher than the dew point temperature or an additional dehumidifier is added. In this study, with a goal for residential application, intentional moisture condensation on the cooling surface was attempted, which increased the cooling capacity and improved the indoor comfortness. This method included two separate refrigeration cycles - convection-type dehumidifying cycle and the panel cooling cycle. Test results on the panel cooling cycle showed that, at the standard outdoor ($35^{\circ}C/24^{\circ}C$) and indoor ($27^{\circ}C/19.5^{\circ}C$) condition, the refrigerant flow rate was 8.8 kg/h, condensation temperature was $51^{\circ}C$, evaporation temperature was $8.8^{\circ}C$, cooling capacity was 376 W and COP was 1.75. Furthermore, the panel temperature was uniform within $1^{\circ}C$ (between $13^{\circ}C$ and $14^{\circ}C$). As the relative humidity decreased, the cooling capacity decreased. However, the power consumption remained approximately constant. In the convection-type dehumidification cycle, the refrigerant flow rate was 21.1 kg/h, condensation temperature was $61^{\circ}C$, evaporation temperature was $5.0^{\circ}C$, cooling capacity was 949 W and COP was 2.11 at the standard air condition. When both the radiation panel cooling and the dehumidification cycle operated simultaneously, the cooling capacity of the radiation panel cycle was 333 W and that of the dehumidification cycle was 894 W, and the COP was 1.89. As the fan flow rate decreased, both the cooling capacity of the radiation panel and the dehumidification cycle decreased, with that of the dehumidification cycle decreasing at a higher rate. Finally, a possible control logic depending on the change of the cooling load was proposed based on the results of the present study.