• Title/Summary/Keyword: 강자성공명

Search Result 68, Processing Time 0.037 seconds

The Magnetic Properties of Polycrystalline Yttrium Iron Garnet by Ferromagnetic Resonance (강자성공명 현상을 이용한 YIG의 자기적 특성 연구)

  • 김기현;이대하;김영호
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.1
    • /
    • pp.7-16
    • /
    • 1999
  • Stoichiometric and nonstoichiometric $Y_{3-x}Fe_{5+x}O_{12})$ polycrystalline samples (x=0.00, 0.05, 0.10, 0.30, -0.05, -0.10, -0.30) were prepared by solid state reaction method. The magnetic properties of the sample were investigated by FMR (ferromagnetic resonance) technique at microwave frequency 5.11 GHz (G-band) and 23.39 GHz (K-band) respectively. The spectroscopic splitting factor g were estimated to be 2.04~2.35 from the derivative absorption lines. As the samples became yttrium $(Y^{3+})$ excess and iron $(Fe^{3+})$ excess, Magnetizations were decreased. But resonance linewidth were increased. To investigate the anisotropy, the angular dependence of resonance magnetic fields were measured. Angular dependence of effective magnetizations were measured by FMR from 77 K to 300 K at K-band microwave frequency (23.39 GHz) and the saturation magnetizations were measured by VSM. The Bloch coefficients B and C were determined by fitting. $M_{eff}(0)$ was obtained by the extrapolation from 80 K. From this result, the spin wave stiffness constant D $(about\; 162~206 \;eV{\AA}^2)$and average square range of exchange interaction $$$(about \;5.84~12.13\;{\AA}^2)$ were determined.

  • PDF

Effect of Calcination Temperature on Electromagnetic Wave Absorption Properties of M-type Ferrite Composite (하소온도가 M형 페라이트 복합재의 전자파 흡수 특성에 미치는 영향)

  • Seong Jun Cheon;Jae Ryung Choi;Sang Bok Lee;Je In Lee;Horim Lee
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.289-296
    • /
    • 2023
  • In this study, we investigated the electromagnetic properties and microwave absorption characteristics of M-type hexagonal ferrites, which are known as millimeter-wave absorbing materials, according to their calcination temperature. The M-type ferrites synthesized using a molten salt-based sol-gel method exhibited a single-phase M-type crystal structure at calcination temperatures above 850℃. The synthesized particle size increased as well with the calcination temperature. Saturation magnetization increased gradually with increasing calcination temperature, but coercivity reached a maximum at 1050℃ and then rapidly decreased. After preparing a thermoplastic polyurethane (TPU) composite containing 70 wt% of M-type ferrites, we measured the complex permittivity and permeability in the Q-band (33-50 GHz) and V-band (50-75 GHz) frequency ranges, where ferromagnetic resonance occurred. Strong magnetic loss from ferromagnetic resonance occurred in the 50 GHz band for all composite samples. Based on the measured results, we calculated the reflection loss of the TPU/M-type ferrite composite. By calculating the reflection loss of the M-type ferrite composite, the M-type ferrite calcined at 1250℃ showed excellent electromagnetic wave absorption performance of more than -20 dB at 52 GHz with a thickness of about 0.5 mm.

FMR Study of $MgFe_2O_4$ Single Crystal in S, J, K-band (S, J, K 주파수영역에서 $MgFe_2O_4$ 단결정의 강자성공명 연구)

  • 박만장;김기현;이혜정;김영호
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.5
    • /
    • pp.298-304
    • /
    • 1996
  • We have manufactured FMR spectrometer over wide range(2-35 GHz). In order to test FMR spectrometer, res¬onance absorption has been measured of the standard sample DPPH. The Q vaules of absorption line are 189-1096. As a result, We noticed that FMR spectrometer has been manufactured well. FMR studies of MgFez04 single crystal have been performed at S, J, K-band. The resonance lines have been observed for the each orientation of (100) plane at 300 K. The values of the magnetic anisotropy constant $K_{1}$ and the spectroscopic spli tting g valule have been calculated from the ferromagnetic resonance curve, $-2.9{\times}10^{4}erg/cm^{3}$, 2.02 at 23.89 GHz, $-2.2{\times}10^{4}erg/cm^{3}$, 1.89 at 5.3 GHz and $-2.8{\times}10^{4}erg/cm^{3}$, 2.01 at 3.6 GHz.

  • PDF

Micromagnetic Analysis of Thermal Magnetization Fluctuations in Ferromagnetic Nanowires (미세자기 동역학을 이용한 강자성 나노선의 자기 잡음 연구)

  • Yoon, Jung-Bum;You, Chun-Yeol;Jo, Young-Hun;Park, Seung-Young;Jung, Myung-Hwa
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • We investigate the spin dynamics of the magnetic domain wall using the magnetic noise in the magnetic nanowire structure by employing micromagnetic simulations. Magnetic noise due to the thermal fluctuations in ferromagnetic materials is related to magnetic susceptibility and resonance frequency, which are important physical quantities in the study of the spin dynamics. In this study, we present the magnetic noise of the single domain without magnetic domain wall, and with the magnetic domain wall between two magnetic domains in ferromagnetic nanowires. It is confirmed that the Kittel equation with simple ellipsoid model with demagnetizing factor well describe the resonance frequency due to magnetic noise of the single domain. Besides, we find that there is a distinguishable additional resonance frequency, when a magnetic domain wall exists. It is verified that the additional resonance frequency is originated from the magnetic domain wall, and it is lower than one of the single domain. It implies that the spins inside the domain wall have a different effective field.

Assessment of Magnetic Resonance Image Quality For Ferromagnetic Artifact Generation: Comparison with 1.5T and 3.0T. (강자성 인공물 발생에 대한 자기공명영상 질 평가: 1.5T와 3.0T 비교)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.193-199
    • /
    • 2018
  • In this research, 15 patients were diagnosed with 1.5T and 3.0T MRI instruments (Philips, Medical System, Achieva) to minize Ferromagnetic artifact and find the optimized Tesla. Based on the theory that the 3.0T, when compared to 1.5T, show relatively high signal-to-ratio(SNR), Scan time can be shortened or adjust the image resolution. However, when using the 3.0T MRI instruments, various artifact due to the magnetic field difference can degrade the diagnostic information. For the analysis condition, area of interest is set at the background of the T1, T2 sagittal image followed by evaluation of L3, L4, L5 SNR, length of 3 parts with Ferromagnetic artifact, and Histogram. The validity evaluation was performed by using the independent t test. As a result, for the SNR evaluation, mere difference in value was observed for L3 between 1.5T and 3.0T, while big differences were observed for both L4, and L5(p<0.05). Shorter length was observed for the 1.5T when observing 3 parts with Ferromagnetic artifact, thus we can conclude that 3.0T can provide more information on about peripheral tissue diagnostic information(p<0.05). Finally, 1.5T showed higher counts values for the Histogram evaluation(p<0.05). As a result, when we have compared the 1.5T and 3.0T with SNR, length of Ferromagnetic artifact, Histogram, we believe that using a Low Tesla for Spine MRI test can achieve the optimal image information for patients with disk operation like PLIF, etc. in the past.

Crystallization and Magnetic Properties of Iron Doped ZnO Diluted Magnetic Semicondutor (철을 미량 치환한 ZnO 희박자성반도체의 결정학적 및 자기적 특성 연구)

  • Ahn, Geun-Young;Park, Seung-Iel;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.92-95
    • /
    • 2005
  • $Zn_{1-x}\;^{57}Fe_xO(x=0.01, 0.02, 0.03)$ compounds were fabricated using the solid-state reaction method. In order to determine magnetic behavior and ionic state of the doped transition metal ($^{57}Fe$) in ZnO, we carried out $M\ddot{o}ssbauer$ measurements at various temperatures ranging from 13 to 295 K. $M\ddot{o}ssbauer$spectra for $Zn_{0.97}\;^{57}Fe_{0.03}O$ at 4.2 K have shown the ferromagnetic phase (sextet), but the only paramagnetic phase (doublet) is seen at 295 K. The hysteresis loop below 77 K for $Zn_{0.97}\;^{57}Fe_{0.03}O$ indicated the coexistence of ferromagnetic and paramagnetic phases.

Analysis of Exchange Coupling Energy by Ferromagnetic Resonance Method in CoFe/MnIr Bilayers (강자성 공명법을 이용한 CoFe/MnIr 박막의 교환 결합 에너지 분석)

  • Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.6
    • /
    • pp.204-209
    • /
    • 2012
  • We measure the ferromagnetic resonance signals in order to analyze the exchange coupling energy due to the uncompensated antiferromagnetic spins in exchange coupled CoFe/MnIr bilayers. The exchange bias fields ($H_{ex}$) and rotatable anisotropy fields ($H_{ra}$) are obtained from the ferromagnetic resonance fields measured with in-plane angle in thermal annealed samples with $t_{AF}$= 0, 3, and 10 nm. The sum of the $H_{ex}$ and $H_{ra}$ do not depend on the MnIr thickness, which means that all the uncompensated AF spins are aligned to one direction in $300^{\circ}C$ annealed samples. Therefore, the uncompensated AF spins are divided into two different parts. One parts are fixed at the interface between CoFe/MnIr bilayers and induces the $H_{ex}$, other parts are rotatable with magnetic field and induces the $H_{ra}$. Finally, the exchange coupling energy can be expressed by the sum of the exchange bias energy and rotatable anisotropy energy.

자기 공명 영상술의 원리와 최근 연구 현황

  • 조장희;김영근
    • 전기의세계
    • /
    • v.38 no.8
    • /
    • pp.19-25
    • /
    • 1989
  • 현재 전세계적으로 퍼져있는 NMR-CT 시스템의 수를 살펴보면 약 370여기가 설치.운영되고 있으며 앞으로 계속 늘어날 전망이다. 국내에서는 1988 한국과학기술원과 금성통신에 의해 자체 개발된 2.0 Tesla 강자장 시스템이 최초로 서울대학병원에 설치 가동된 이래 여러병원에서 시스템들이 설치중에 있다. 첨단의로 진단장치로서의 핵자기 공명 영상법은 그 영상을 통하여 기존의 진단 장치보다 우월함을 증명하고 있으며 초음파 검사나 동위원소 검사 및 X선 전산화 단층 촬영술들을 장점을 두루 지니면서 그 영상법의 다양성 때문에 앞으로의 연구 및 발전에 대한 전망은 아주 밝다고 할 수 있다. 따라서 앞으로의 종합 영상 의료 진단 장치는 이 NMR-CT가 중심이 되어 발전할 것이라고 단언해도 무리한 생각은 아닐 것이다.

  • PDF