Browse > Article
http://dx.doi.org/10.4283/JKMS.2010.20.1.001

Micromagnetic Analysis of Thermal Magnetization Fluctuations in Ferromagnetic Nanowires  

Yoon, Jung-Bum (Department of Physics, Inha University)
You, Chun-Yeol (Department of Physics, Inha University)
Jo, Young-Hun (Division of Materials Science, Korea Basic Science Institute)
Park, Seung-Young (Division of Materials Science, Korea Basic Science Institute)
Jung, Myung-Hwa (Department of Physics, Sogang University)
Abstract
We investigate the spin dynamics of the magnetic domain wall using the magnetic noise in the magnetic nanowire structure by employing micromagnetic simulations. Magnetic noise due to the thermal fluctuations in ferromagnetic materials is related to magnetic susceptibility and resonance frequency, which are important physical quantities in the study of the spin dynamics. In this study, we present the magnetic noise of the single domain without magnetic domain wall, and with the magnetic domain wall between two magnetic domains in ferromagnetic nanowires. It is confirmed that the Kittel equation with simple ellipsoid model with demagnetizing factor well describe the resonance frequency due to magnetic noise of the single domain. Besides, we find that there is a distinguishable additional resonance frequency, when a magnetic domain wall exists. It is verified that the additional resonance frequency is originated from the magnetic domain wall, and it is lower than one of the single domain. It implies that the spins inside the domain wall have a different effective field.
Keywords
magnetic noise; thermal fluctuation; single domain; domain wall;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 http://www.nanoscience.de/group_r/stm-spstm/projects/temperature/downloads.html
2 J. L. García-Palacios and F. J. Lázaro, Phys. Rev. B, 58, 14937 (1998).   DOI
3 G. Grinstein and R. H. Koch, Phys. Rev. Lett., 90, 207201-1 (2003).   DOI   ScienceOn
4 S. Petit, N. de Mestier, C. Baraduc, C. Thirion, Y. Liu, M. Li, P. Wang, and B. Dieny, Phys. Rev. B, 78, 184420 (2008).   DOI   ScienceOn
5 Y. Nakatani, A. Thiaville, and J. Miltat, J. Magn. Magn. Mater, 290-291, 750-753 (2005).
6 S. Petit, C. Baraduc, C. Thirion, U. Ebels, Y. Liu, M. Li, P. Wang, and B. Dieny, Phys. Rev. Lett., 98, 077203 (2007).   DOI   ScienceOn
7 C. Heiliger and M. D. Stiles, Phys. Rev. Lett., 100, 186805 (2008).   DOI   ScienceOn
8 I. N. Krivorotov, N. C. Emley, R. A. Buhrman, and D. C. Ralph, Phys. Rev. B, 77, 054440 (2008).   DOI   ScienceOn
9 K.-J. Lee, A. Deac, O. Redon, J.-P. Nozieres, and B. Dieny, Nat. Mater., 3, 877 (2004).   DOI   ScienceOn
10 S.-W. Jung and H.-W. Lee, J. Magnetics, 12, 1 (2007).   DOI   ScienceOn
11 S. S. P. Parkin, M. Hayashi, and L. Thomas, Science, 320, 190 (2008).   DOI   ScienceOn
12 K.-J. Kim, J.-C. Lee, and S.-B. Choe, J. Magnetics, 14, 101 (2009).   DOI   ScienceOn
13 N. Smith, J. Appl. Phys., 90, 5768 (2001).   DOI   ScienceOn
14 M. Hayashi, L. Thomas, R. Moriya, C. Rettner, and S. S. P. Parkin, Science, 320, 209 (2008).   DOI   ScienceOn
15 http://math.nist.gov/oommf
16 J. A. Osborn, Phys. Rev., 67, 351 (1945).   DOI