• Title/Summary/Keyword: 강우-유출응답

Search Result 42, Processing Time 0.022 seconds

Land Cover Classification and Effective Rainfall Mapping using Landsat TM Data (Landsat TM 자료를 이용한 토지피복분류와 유효우량도의 작성)

  • Shin, Sha-Chul;Kwon, Gi-Ryang;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.411-423
    • /
    • 2002
  • Accurate and real time forecasting of runoff has a high priority in the drainage basins prone to short, high intensity rainfall events causing flash floods. To take into account the resolution of hydrological variables within a drainage basin, use of distributed system models is preferred. The Landsat Thematic Mapper(TM) observations enable detailed information on distribution of land cover and other related factors within a drainage basin and permit the use of distributed system models. This paper describes monitoring technique of rainfall excess by SCS curve number method. The time series maps of rainfall excess were generated for all the storm events to show the spatiotemporal distribution of rainfall excess within study basin. A combination of the time series maps of rainfall excess with a flow routing technique would simulate the flow hydrograph at the drainage basin outlet.

Application of GIS for Runoff Simulation in Ungaged Basin(I): Selection of Soil Map and Landuse Map (미계측 유역의 유출모의를 위한 지리정보시스템의 응용(I) : 토양도 및 토지이용도의 선정)

  • Kim, Gyeong-Tak;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.163-176
    • /
    • 1999
  • Hydrology-based topographical informations generated by GIS techniques could be changed according to the selection of base map, algorithm of extraction, and so on. The purpose of this paper is to investigate the variation of SCS CN extracted by GIS technique and to propose the effective strategy for applying GIS to the rainfall-runoff simulation in ungaged basin. For experimental implementation, GIS spatial data, such as reconnaissance soil map, detailed interpretative soil map, landuse planning map and remotely sensed data(Landsat TM), were collected and generated to calculate the amount of effective rainfall in Pyungchang river basin. In applying SCS Runoff Curve Number to the test basin, the hydrological attribute data were analyzed. In addition, the characteristics of runoff responses according to the selection of GIS spatial data for SCS CN were reviewed. This study shows the applicability of GIS techniques to runoff simulation in ungaged basin by comparing with the measured flood hydrograph. It has been found that the detained interpretative soil map and remote sensing data are appropriate for calculating of SCS CN.

  • PDF

Development of a Comprehensive Flood Index through Standardizing Distributions of Runoff Characteristics (유출특성 분포함수의 표준화를 통한 종합홍수지수의 개발)

  • Wi, Sung-Wook;Chung, Gun-Hui;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.6
    • /
    • pp.605-617
    • /
    • 2008
  • This study developed a flood index which evaluates runoff characteristics. Runoff characteristics expressed in a hydrograph were reflected in the flood index in the form of characteristic factors such as a rising curve gradient, a peak discharge, a flood response time, and a flood discharge volume prior to peak. This study applied the standardization method to estimate the relative severity of the characteristic factors by transforming the distribution of characteristic factors into the standard normal distribution. The flood index developed in this study is a comprehensive flood index (CFI) which makes up for the weak points of a flash flood index (FFI) in determining relative severities. The CFI was applied to Han River basin and Selma River basin, and was compared with the FFI based on the correlation analysis and the regression analysis. The CFI could comprehensively evaluate flood runoff characteristics because the CFI is not dominated by a specific characteristic factor, and the CFI could explain more efficiently the relationship between rainfall and runoff than the FFI.

A Study on the Geomorphologic Synthesis of Hydrologic Response (수문응답의 지형학적 합성방법에 관한 연구)

  • Cho, Hong Je;Lee, Sang Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.99-108
    • /
    • 1990
  • A Synthetic Unit Hydrograph Method was investigated for representation of the effective rainfall-direct runoff hydrograph by using a Geomorphologic Instantaneous Unit Hydrograpb(GIUH) proposed by Gupta et al(1980). The response function of the basin was assumed to be the two-parameter gamma probability density function. The physical parameters of the response function(Nash Model) was determined by using the regression eqs. were parameterized in terms of Horton order ratios and the relations between the basin lag time and time-scale parameter. The capability of the Synthetic Unit Hydrograph to the real basin was tested for the Pyungchang river basin and Wi Stream basin, and its capability to reproduce the hydrologic response was investigate and compared with the Moment Method and the Least Square Method used incomplete gamma function. The representation of the peak flow, the time to peak and the hydrographs the derived Synthetic Unit Hydrograph were tested on some obseved flood data and showed promising, and it was approved to be used for prediction of the ungaged basins.

  • PDF

Quantification of Directional Properties of Channel Network and Hill Slope (하천망과 사면의 방향성 정량화)

  • Park, Changyeol;Yoo, Chulsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.233-242
    • /
    • 2011
  • This study quantified directional properties of channel network and hill slope for a river basin by applying the von Mises distribution, also examined the relation between them. Ultimately, it was examined that whether the directional properties of channel network and hill slope have a certain relation, which might be considered to the rainfall-runoff modeling. From the results derived by analyzing the Naesung stream basin, the von Mises distribution was found well to explain the directional characteristics of directional properties of channel network. There was a clear relation between directional properties of channel network and hill slope. The higher-order streams also showed very obvious modal characteristics. The results derived in this study could be helpful to estimate more quantitatively the difference in the runoff response with respect to the directional properties of channel network and hill slope.

A Linear Analysis of the Relationship between Rainfall and Base Flow for Physical Characteristics (물리적(物理的) 특성(特性)들을 위한 강우(降雨)와 기저유출(基底流出)의 선형해석(線形解析))

  • Kim, Jae Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.47-57
    • /
    • 1983
  • The parameter of impulse response of groundwater proposed by Kraijenhoff, that is, the reservoir coefficient j is determined on the basis of the least squares criteria. The degree (${\alpha}$) which expresses how much each sequential storm contributes to groundwater flow through the saturated soil is obtained by the optimization techniques which minimize deviations between observed and derived runoff hydrograph, and the convolution summation for the linear theory is used. A numerical example for this study is carried out for a storm event of Goose Creek basin near Leesburg, Virginia. As the results, the groundwater unit hydrograph and baseflow were able to be obtained. The used optimization technique is suited to the purpose of this study in case of the constraints. It is judged that the results allow the determination of baseflow.

  • PDF

Quantification of Storm Direction for a River Basin (하천유역에 대한 호우 방향성의 정량화)

  • Park, Chang-Yeol;Yoo, Chul-Sang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.109-117
    • /
    • 2010
  • This study quantified the storm direction for a river basin by applying the von Mises distribution, also determined the representative storm direction. Additionally, the whole procedure was repeated for several storm types such as frontal, typhoon and convective storms for their comparison. From the results derived by analyzing a total of 101 storm events for the Naesung river basin, the von Mises distribution was found to explain the directional characteristics of storms. The representative moving directions derived for three different storm types were significantly different each other, which is coincident with the climate of Korea. The results derived in this study could be helpful to estimate more quantitatively the difference in the runoff response with respect to the moving direction of a storm.

Analysis of the Effect of Objective Functions on Hydrologic Model Calibration and Simulation (목적함수에 따른 매개변수 추정 및 수문모형 정확도 비교·분석)

  • Lee, Gi Ha;Yeon, Min Ho;Kim, Young Hun;Jung, Sung Ho
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • An automatic optimization technique is used to estimate the optimal parameters of the hydrologic model, and different hydrologic response results can be provided depending on objective functions. In this study, the parameters of the event-based rainfall-runoff model were estimated using various objective functions, the reproducibility of the hydrograph according to the objective functions was evaluated, and appropriate objective functions were proposed. As the rainfall-runoff model, the storage function model(SFM), which is a lumped hydrologic model used for runoff simulation in the current Korean flood forecasting system, was selected. In order to evaluate the reproducibility of the hydrograph for each objective function, 9 rainfall events were selected for the Cheoncheon basin, which is the upstream basin of Yongdam Dam, and widely-used 7 objective functions were selected for parameter estimation of the SFM for each rainfall event. Then, the reproducibility of the simulated hydrograph using the optimal parameter sets based on the different objective functions was analyzed. As a result, RMSE, NSE, and RSR, which include the error square term in the objective function, showed the highest accuracy for all rainfall events except for Event 7. In addition, in the case of PBIAS and VE, which include an error term compared to the observed flow, it also showed relatively stable reproducibility of the hydrograph. However, in the case of MIA, which adjusts parameters sensitive to high flow and low flow simultaneously, the hydrograph reproducibility performance was found to be very low.

Study of Rainfall-Runoff Variation by Grid Size and Critical Area (격자크기와 임계면적에 따른 홍수유출특성 변화)

  • Ahn, Seung-Seop;Lee, Jeung-Seok;Jung, Do-Joon;Han, Ho-Chul
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.523-532
    • /
    • 2007
  • This study utilized the 1/25,000 topographic map of the upper area from the Geum-ho watermark located at the middle of Geum-ho river from the National Geographic Information Institute. For the analysis, first, the influence of the size of critical area to the hydro topographic factors was examined changing grid size to $10m{\times}10m,\;30m{\times}30m\;and\;50m{\times}50m$, and the critical area for the formation of a river to $0.01km^2{\sim}0.50km^2$. It is known from the examination result of watershed morphology according to the grid size that the smaller grid size, the better resolution and accuracy. And it is found, from the analysis result of the degree of the river according to the minimum critical area for each grid size, that the grid size does not affect on the degree of the river, and the number of rivers with 2nd and higher degree does not show remarkable difference while there is big difference in the number of 1st degree rivers. From the results above, it is thought that the critical area of $0.15km^2{\sim}0.20km^2$ is appropriate for formation of a river being irrelevant to the grid size in extraction of hydro topographic parameters that are used in the runoff analysis model using topographic maps. Therefore, the GIUH model applied analysis results by use of the river level difference law proposed in this study for the explanation on the outflow response-changing characters according to the decision of a critical value of a minimum level difference river, showed that, since an ogival occurrence time and an ogival flow volume are very significant in a flood occurrence in case of not undertow facilities, the researcher could obtain a good result for the forecast of river outflow when considering a convenient application of the model and an easy acquisition of data, so it's judged that this model is proper as an algorism for the decision of a critical value of a river basin.

A Characteristic Analysis of Critical Duration of Design Rainfall in Medium Sized Catchment (중규모 하천유역에서 임계지속기간 특성 분석)

  • Lee, Jung-Sik;Park, Jong-Young;Kim, Seok-Dong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.135-144
    • /
    • 2009
  • The objective of this study is to examine the effect of hydrological factors on critical durations, and to analyze the relationship between the watershed characteristics and the critical duration of design rainfall in the medium sized catchments. Hydrological factors are used to return period, probable intensity formula, hydrograph method, effective rainfall and temporal pattern of design rainfall. Hydrologic analysis has done over the 44 medium sized catchments with $50{\sim}5,000{\beta}{\yen}$. Watershed characteristics such as catchment area, channel length, channel slope, catchment slope, time to peak, concentration of time and curve number were used to simulate correlation analysis. All of hydrological factors except return period influence to the critical duration of design rainfall. Also, it is revealed that critical duration is influenced by the watershed characteristics such as area, channel length, channel slope and catchment slope. Multiple regression analysis using watershed characteristics is carried out for the estimation of relationship among these. And the 7 type equations are proposed by the multiple regression using watershed characteristics and critical duration of design rainfall. The determination coefficient of multiple regression equations shows $0.96{\sim}0.97$.