• Title/Summary/Keyword: 강우 자료

Search Result 2,867, Processing Time 0.036 seconds

Analysis of Impacts of Land Cover Change on Runoff Using HSPF Model (HSPF 모형을 이용한 토지피복변화에 따른 유출 변화 분석)

  • Park, Min-Ji;Kwon, Hyung-Joong;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6 s.155
    • /
    • pp.495-504
    • /
    • 2005
  • The objective of this study is to estimate the impacts of land cover change on the runoff behavior using Hydrologic Simulation Program-Fortran (HSPF) model and Landsat images. Land cover maps were prepared using three every ten years from 1980 to 2000 of the upper watershed ($258\;km^2$) of Gyeongan stream. Hydrologic parameters of HSPF were calibrated using observed data (1999 - 2000) and validated using observed data (2001, 2003) at Gyeongan gauge station. The simulation results showed that runoff volume and peak rate increased as $15.0\;km^2$ forest areas decreased and $19.3\;km^2$ urban areas increased for 20 years land use changes. The runoff volume showed a higher rate of increase in wet year (2003, 1709.4 mm) than in dry year (2001, 871.2 mm). The peak runoff increased $13.3\;\%$ in normal year (2000, 1257.3 mm) because the year has the highest rain intensity (241.3 mm/hr) among the test years. The runoff volume of a dry season and a wet season (May - September) in normal year 2000 increased $4.4\;\%$ and decreased $8.1\;\%$, respectively.

Estimation of Rainfall Intensity for MTSAT-1R Data using Microwave Rainfall (마이크로웨이브 강수량을 이용한 MTSAT-1R 위성의 강우강도 추정)

  • Jee, Joon-Bum;Lee, Kyu-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.511-525
    • /
    • 2010
  • Rainfall intensity was estimated using the MTSAT-1R infrared channels and the microwave satellite precipitation data. Brightness temperature of geostationary satellite is matched temporal and spatial to a variety of microwave satellite(SSM/I, SSMIS, AMSU-B, AMSRE, TRMM) precipitation data. Rainfall intensity was calculated by the look -up table using relationships of MTSAT-1R brightness temperature and microwave precipitation. Estimated rainfall is verified using by precipitation of TRMM satellite(TRMM3B42) and ground rainfall as AWS from Jul. 21 2008 to Jul. 25 2008. The results of rainfall estimated TRMM 2A12(TMI) that validated by AWS and TRMM3B42 precipitation are represented highly 0.38 and 0.61 by correlation coefficient, 5.81 mm/hr and 2.44 mm/hr by RMSE, 0.79 and 0.84 by POD and 0.65 and 0.87 by PC, respectively. Overall, estimated rainfall using by microwave satellite calculated 5 mm/hr or more comparing by AWS and 5 mm/hr or more comparing by TRMM3B42 precipitation, respectively. Validation results of correlation coefficient are shown series of TRMM 2A12, AMSRE, SSM/I, AMSU-B and SSMIS.

Estimation of Nonpoint Source Pollutant Loads for Rural Watershed by AvSWAT (AvSWAT를 이용한 농촌유역 비점원 오염물질 부하량 예측)

  • Kim, Jin-Ho;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Han, Kuk-Heon;Ruy, Jong-Su;Kim, Suk-Cheol;Yun, Sun-Gang;Lee, Jeong-Taek;Kwun, Soon-Kuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.12-17
    • /
    • 2007
  • This study was conducted to evaluate the characteristics of nonpoint source pollutants discharge from a small rural watershed. A typical rural area in Gongju City, Korea, was selected as the research site. Water quality and quantity in streams and rainfall samples were analyzed periodically from May to October 2005. Pollutant loads were estimated from a nonpoint source pollution model (AvSWAT, Arcview Soil and Water Assessment Tool). During the rainy season, from June 26 to 30 September 2005 and the dry season, before 26 June and after 30 September 2005, biological oxygen demands and chemical oxygen demands accounted for 91.3% and 93.7% of annual load, respectively, while total-N and total-P were 97.1% and 91.1% of annual load, respectively. The observed stream flow was $66.5m^3sec^{-1}$, while simulation stream flow was $66.2m^3sec^{-1}$. That can be assumed that simulation can be used to estimate the stream flow without practical measurement. However, the runoff trend following the occurrence of a storm event was not recorded properly.

Assessment of artificial neural network model for real-time dam inflow prediction (실시간 댐 유입량 예측을 위한 인공신경망 모형의 활용성 평가)

  • Heo, Jae-Yeong;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1131-1141
    • /
    • 2021
  • In this study, the artificial neural network model is applied for real-time dam inflow prediction and then evaluated for the prediction lead times (1, 3, 6 hr) in dam basins in Korea. For the training and testing the model, hourly precipitation and inflow are used as input data according to average annual inflow. The results show that the model performance for up to 6 hour is acceptable because the NSE is 0.57 to 0.79 or higher. Totally, the predictive performance of the model in dry seasons is weaker than the performance in wet seasons, and this difference in performance increases in the larger basin. For the 6 hour prediction lead time, the model performance changes as the sequence length increases. These changes are significant for the dry season with increasing sequence length compared to the wet season. Also, with increasing the sequence length, the prediction performance of the model improved during the dry season. Comparison of observed and predicted hydrographs for flood events showed that although the shape of the prediction hydrograph is similar to the observed hydrograph, the peak flow tends to be underestimated and the peak time is delayed depending on the prediction lead time.

Meteorological drought outlook with satellite precipitation data using Bayesian networks and decision-making model (베이지안 네트워크 및 의사결정 모형을 이용한 위성 강수자료 기반 기상학적 가뭄 전망)

  • Shin, Ji Yae;Kim, Ji-Eun;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.279-289
    • /
    • 2019
  • Unlike other natural disasters, drought is a reoccurring and region-wide phenomenon after being triggered by a prolonged precipitation deficiency. Considering that remote sensing products provide consistent temporal and spatial measurements of precipitation, this study developed a remote sensing data-based drought outlook model. The meteorological drought was defined by the Standardized Precipitation Index (SPI) achieved from PERSIANN_CDR, TRMM 3B42 and GPM IMERG images. Bayesian networks were employed in this study to combine the historical drought information and dynamical prediction products in advance of drought outlook. Drought outlook was determined through a decision-making model considering the current drought condition and forecasted condition from the Bayesian networks. Drought outlook condition was classified by four states such as no drought, drought occurrence, drought persistence, and drought removal. The receiver operating characteristics (ROC) curve analysis were employed to measure the relative outlook performance with the dynamical prediction production, Multi-Model Ensemble (MME). The ROC analysis indicated that the proposed outlook model showed better performance than the MME, especially for drought occurrence and persistence of 2- and 3-month outlook.

The Effects of the Bestseller Ranks on Public Library Circulation: Based on Panel Data Analysis (베스트셀러 순위가 공공도서관 대출에 미치는 영향 분석: 패널자료 분석을 중심으로)

  • Lee, Jongwook;Kang, Woojin;Park, Jungkyu
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.4
    • /
    • pp.1-23
    • /
    • 2021
  • The purpose of this study is to analyze the effects of the bestseller ranks on the book circulations in public libraries. To achieve this goal, the weekly data sets of 179 books' library circulation and bestseller list from January 1, 2018 to December 29, 2019 were constructed based on the data collected from BigData MarketC and YES24. Three methods for analyzing panel data including linear regression, fixed-effect, and random effect models were compared, and it turned out that fixed-effect model was better than other methods. The results show that the average ranks of bestsellers were associated with their public library circulations visually. Also, the analysis of fixed-effect model showed that the single rank decline of a book on the bestseller list decreases its average circulation of 0.108 while the size of effect varied depending on subject of books. The study empirically demonstrated the impact of a bestseller list on people's book circulation behavior, suggesting that public libraries need to reference sociocultural context as well as bestseller book lists to predict library user needs and to formulate collection development policy.

Major Factors Influencing Landslide Occurrence along a Forest Road Determined Using Structural Equation Model Analysis and Logistic Regression Analysis (구조방정식과 로지스틱 회귀분석을 이용한 임도비탈면 산사태의 주요 영향인자 선정)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.585-596
    • /
    • 2022
  • This study determined major factors influencing landslide occurrence along a forest road near Sangsan village, Sancheok-myeon, Chungju-si, Chungcheongbuk-do, South Korea. Within a 2 km radius of the study area, landslides occur intensively during periods of heavy rainfall (August 2020). This makes study of the area advantageous, as it allows examination of the influence of only geological and tomographic factors while excluding the effects of rainfall and vegetation. Data for 82 locations (37 experiencing landslides and 45 not) were obtained from geological surveys, laboratory tests, and geo-spatial analysis. After some data preprocessing (e.g., error filtering, minimum-maximum normalization, and multicollinearity), structural equation model (SEM) and logistic regression (LR) analyses were conducted. These showed the regolith thickness, porosity, and saturated unit weight to be the factors most influential of landslide risk in the study area. The sums of the influence magnitudes of these factors are 71% in SEM and 83% in LR.

Development of a Stochastic Precipitation Generation Model for Generating Multi-site Daily Precipitation (다지점 일강수 모의를 위한 추계학적 강수모의모형의 구축)

  • Jeong, Dae-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.397-408
    • /
    • 2009
  • In this study, a stochastic precipitation generation framework for simultaneous simulation of daily precipitation at multiple sites is presented. The precipitation occurrence at individual sites is generated using hybrid-order Markov chain model which allows higher-order dependence for dry sequences. The precipitation amounts are reproduced using Anscombe residuals and gamma distributions. Multisite spatial correlations in the precipitation occurrence and amount series are represented with spatially correlated random numbers. The proposed model is applied for a network of 17 locations in the middle of Korean peninsular. Evaluation statistics are reported by generating 50 realizations of the precipitation of length equal to the observed record. The analysis of results show that the model reproduces wet day number, wet and dry day spell, and mean and standard deviation of wet day amount fairly well. However, mean values of 50 realizations of generated precipitation series yield around 23% Root Mean Square Errors (RMSE) of the average value of observed maximum numbers of consecutive wet and dry days and 17% RMSE of the average value of observed annual maximum precipitations for return periods of 100 and 200 years. The provided model also reproduces spatial correlations in observed precipitation occurrence and amount series accurately.

Impacts of Nitrate in Base Flow Discharge on Surface Water Quality (질산성 질소 기저유출이 지표수 수질에 미치는 영향)

  • Kim, Geonha;Lee, Hosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.105-109
    • /
    • 2009
  • It is a well known fact that baseflow discharge of rainfall runoff impacts on water quality of surface water significantly. In this paper, impacts of nitrate discharged as base flow on stream water quality were studied by using a software, PULSE from USGS to calculate monthly ground water discharge from hydrograph. We used water quality and flow rate data for Ghapcehon2 site in Daejeon city for year 2005 as well as ground water quality data in the watershed acquired from government agencies. Agricultural and forestry land use are dominant for upstream of Ghapcheon2 in the watershed. Base flow contributes about 85~95% of stream flows during spring and fall while 25~38% of stream flow was induced by base flow during summer and winter. Monthly nitrate loading discharged as base flow for Ghapcheon2 was estimated by using averaged nitrate concentration of groundwater in the watershed. Nitrate loading induced by base flow at Ghapcheon2 was estimated as 5.4 ton of $NO_{3}{^-}-N/km^{2}$, which is about 60% of nitrate loading of surface water, 9.2 ton of $NO_{3}{^-}-N/km^{2}$. Seasonal variation of nitrate concentration of base flow was estimated by dividing monthly nitrate loading by monthly base flow discharge. Nitrate concentration of groundwater was increasing from rainy season. From this study, it can be understood that ground water quality monitoring is important for the proper manage of surface water quality.

Effect Analysis of Precipitation Events According to an Urbanization (도시화가 강수사상에 미치는 영향 분석)

  • Oh, Tae Suk;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.413-427
    • /
    • 2010
  • Urbanization means the sudden increment of a population and the industrialization. The hydrologic water cycle causes many changes due to urbanization. Therefore, the affects that urbanization influences on the precipitation events were analyzed. But the precipitation events are very much influenced many meteorological and climatologically indices besides the effect of an urbanization. So, an analysis was performed by using precipitation data observed in many spots of the Korean peninsula. The analysis data are annual precipitation, the duration 1 daily maximum amount of precipitation, the rainy days, and 10 mm over the rainy days, and 80 mm. seasonal precipitation and seasonal rainy days. The analytical method classified 4 clusters in which the precipitation characteristic is similar through the cluster analysis. It compared and analyzed precipitation events of the urban and rural stations. Moreover, the representative rainfall stations were selected and the urban stations and rural stations were compared. In the analyzed result, the increment of the rainy days was conspicuous over 80mm in which it can cause the heavy rainfall. By using time precipitation data, the design precipitation was calculated. Rainfall events over probability precipitation on duration and return period were analyzed. The times in which it exceeds the probability precipitation in which the urban area is used for the hydrologic structure design in comparison with the rural area more was very much exposed to increase.