• Title/Summary/Keyword: 강우 센서

Search Result 134, Processing Time 0.026 seconds

Priority for the Investment of Artificial Rainfall Fusion Technology (인공강우 융합기술 개발을 위한 R&D 투자 우선순위 도출)

  • Lim, Jong Yeon;Kim, KwangHoon;Won, DongKyu;Yeo, Woon-Dong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.3
    • /
    • pp.261-274
    • /
    • 2019
  • This paper aims to develop an appropriate methodology for establishing an investment strategy for 'demonstration of artificial rainfall technology using UAV' and that include establishment of a technology classification, set of indicators for technology evaluation, suggestion of final key technology as a whole study area. It is designed to complement the latest research trend analysis results and expert committee opinions using quantitative analysis. The key indicators for technology evaluation consisted of three major items (activity, technology, marketability) and 10 detailed indicators. The AHP questionnaire was conducted to analyze the importance of indicators. As a result, it was analyzed that the attribute of the technology itself is most important, and the order of closeness to the implementation of the core function (centrality), feasibility (feasibility). Among the 16 technology groups, top investment priority groups were analyzed as ground seeding, artificial rainfall verification, spreading and diffusion of seeding material, artificial rainfall numerical modeling, and UAV sensor technology.

Application of Flux Profile Method for Evaluating the Temperature Decreasing Effects of Green roof (여름철 옥상녹화의 온도저감효과 평가를 위한 Flux Profile Method의 적용)

  • Kwon, You Jeong;Seo, YongWon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.94-94
    • /
    • 2021
  • 현재 전 지구적으로 일어나고 있는 극단적 기후현상과 이로 인한 자연재해의 원인은 복합적이다. 기후변화로 인한 영향과 동시에 도시화 또한 하나의 원인으로 작용하고 있다. 이러한 영향을 완화하기 위한 방안으로 도시의 그린인프라와 저영향개발은 최근 지속가능한 발전을 위해 꼭 필요한 요소로 자리잡고 있다. 그린인프라 유형 중 하나인 옥상녹화는 많은 이점을 제공한다. 도시에 위치한 건물의 상층부, 내부 및 주변 온도을 낮춤으로써 얻을 수 있는 에너지절감 효과와 강우 시 상당량의 빗물을 저류함으로써 기대되는 우수유출 저감효과, 그리고 도시 공간 내 식물의 적극적인 도입으로 인한 이산화탄소 배출 저감 효과 등을 기대할 수 있다. 본 연구에서는 도시지역의 열섬현상완화와 유출저감의 방안 중 하나인 옥상녹화(Green roof)의 효과를 정량적으로 평가하기 위해 콘크리트로 이루어진 동일한 제원의 실험동을 구축하고, 실험동 내외부의 연직방향 온도, 습도, 강우, 풍속, 일사량 등의 기상자료를 측정할 수 있는 센서를 설치하였다. 각 실험동에서 측정된 기상자료를 Flux Profile Method를 적용하여 무강우기간과 강우발생기간 동안의 연직 방향의 현열속, 잠열속, 토양열속(H, LE, G) 을 산정하였다. 에너지 평형에 따라 산정된 각 실험동의 열속과 지표면 복사량 관측자료을 정량적으로 비교하여 적용성을 평가하였다. 실험의 대조군인 일반 코팅재로 마감된 콘크리트 지붕의 무강우 기간 중 최대 현열속 693.82 W/m2 잠열속은 330.15 W/m2 으로 나타났으며, 실험군인 옥상녹화가 조성된 지붕의 최대 현열속 436.27 W/m2, 잠열속 949.20 W/m2 으로 나타났으며, 산정치와 관측치 시계열의 NSE는 0.81 으로 Flux Profile Method를 통해 산정된 열속의 정확도는 비교적 높은 것으로 나타났다. 이와 같은 방법으로 옥상녹화의 정량적 평가가 가능해짐으로써 향후 기후변화 대응방안 및 전략 수립 시 옥상녹화의 온도저감효과 분석에 적극 활용할 수 있을 것으로 판단된다.

  • PDF

Rainfall Characteristics in the Tropical Oceans: Observations using TRMM TMI and PR (열대강우관측(TRMM) 위성의 TMI와 PR에서 관측된 열대해양에서의 강우 특성)

  • Seo, Eun-Kyoung
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.113-125
    • /
    • 2012
  • The estimations of the surface rain intensity and rain-related physical variables derived from two independent Tropical Rainfall Measuring Mission (TRMM) satellite sensors, TRMM Microwave Imager (TMI) and Precipitation Radar (PR), were compared over four different oceans. The precipitating clouds developed most frequently in the warmest sea surface temperature (SST) region of the west Pacific, which is 1.5 times more frequent than in the east Pacific and the tropical Atlantic oceans. However, the east Pacific exhibited the most intense rain intensity for the convective and mixed rain types while the tropical Atlantic showed the most intense rain intensity for all TMI rainy pixels. It was found that the deviation of TMI-derived rain rate yielded a big difference in region-to-region and rain type-to-type if the PR rain intensity value is assumed to be closer to the truth. Furthermore, the deviation by rain types showed opposite signs between convective and non-convective rain types. It was found that the region-to-region deviation differences reached more than 200% even though the selected tropical oceans have relatively similar geophysical environments. Therefore, the validation for the microwave rain estimation needs to be performed according to both rain types and climate regimes, and it also requires more sophisticated TMI algorithm which reflects the locality of rainfall characteristics.

Analysis of the Failure Mode in a Homogeneous Sandy Slope Using Model Test (모형실험을 이용한 균질한 사질토 사면의 붕괴형상 분석)

  • Song, Young-Suk;Park, Joon-Young;Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.209-219
    • /
    • 2022
  • To experimentally investigate the variation of soil characteristics in slope during rainfall and the shape of slope failure, the model test was performed using soil box and artificial rainfall simulator. The model test of slope formed by the homogenous sand was performed, and the saturation pattern in the model slope due to rainfall infiltration was observed. The slope model with the inclination of 35° was set up on the slope of 30°, and the rainfall intensity of 50 mm/hr was applied in the test. The soil depth of 35 cm was selected by considering the size of soil box, and the TDR (time domain reflectometry) sensors were installed at various depths to investigate the change of soil characteristics with time. As the result of model test, the slope model during rainfall was saturated from the soil surface to the subsurface, and from the toe part to the crest part due to rainfall infiltration. That is, the toe part of slope was firstly saturated by rainfall infiltration, and then due to continuous rainfall the saturation range was enlarged from the toe part to the crest part in the slope model. The failure of slope model was started at the toe part of slope and then enlarged to the crest part, which is called as the retrogressive failure. At the end of slope failure, the collapsed area increased rapidly. Also, the mode of slope failure was rotational. Meanwhile, the slope failure was occurred when the matric suction in the slope was reached to the air entry value (AEV) estimated in soil-water characteristic curve (SWCC).

The Current Methods of Landslide Monitoring Using Observation Sensors for Geologic Property (지질특성 관측용 센서를 이용한 산사태 모니터링 기법 현황)

  • Chae, Byung-Gon;Song, Young-Suk;Choi, Junghae;Kim, Kyeong-Su
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.291-298
    • /
    • 2015
  • There are many landslides occurred by typhoons and intense rainfall during the summer seasons in Korea. To predict a landslide triggering it is important to understand mechanisms and potential areas of landslides by the geological approaches. However, recent climate changes make difficult to predict landslide based on only conventional prediction methods. Therefore, the importance of a real-time monitoring of landslide using various sensors is emphasized in recent. Many researchers have studied monitoring techniques of landslides and suggested several monitoring systems which can be applicable to the natural terrain. Most sensors of landslide monitoring measure slope displacement, hydrogeologic properties of soils and rocks, changes of stress in soil and rock fractures, and rainfall amount and intensity. The measured values of each sensor are transmitted to a monitoring server in real-time. The ultimate goal of landslide monitoring is to warn landslide occurrence in advance and to reduce damages induced by landslides. This study introduces the current situation of landslide monitoring techniques in each country.

Rainfall-Runoff Analysis in Nerin Watershed Using Weather Radar and Distributed Hydrologic Model (기상레이더와 분포형 수문모형을 이용한 내린천 유역의 강우-유출 분석)

  • Park, Jung-Sool;Choi, Yun-Seok;Kim, Kyung-Tak;Lee, Seung-Gi
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.291-295
    • /
    • 2009
  • 최근 기후변화로 인한 여름철 집중호우의 빈발로 산지하천 유역 관리의 필요성이 대두되고 있다. 산지하천은 급경사지가 주를 이루어 붕괴 위험지역이 존재하는 경우가 많고 집중호우 발생시에는 산사태, 토석류 등의 2차적인 재해 발생 위험성도 큰 편이다. 산지 하천유역의 효과적인 관리를 위해서는 유출현상을 강우 및 기타 수문기상자료에 근거하여 추정하는 유출해석과 더불어 호우에 따른 토사유출량의 산정, 하천유역의 지형학적 분석 등이 종합적으로 필요하며 재해발생 위험지역에는 초기단계의 적절한 대응을 위해 센서기술을 기반으로 한 감시체계의 구축이 요구되기도 한다. 본 연구에서는 2006년 7월 대규모 홍수피해가 발생한 강원도 인제의 내린천 유역을 대상으로 기상청 기상레이더와 분포형 수문모형을 이용한 유출해석을 수행하였으며 기상레이더 자료의 수문학적 활용성과 유역관리를 위한 분포형 모형의 활용성을 평가하였다.

  • PDF

Analysis of Rainfall Infiltration Velocity in Unsaturated Soils Under Both Continuous and Repeated Rainfall Conditions by an Unsaturated Soil Column Test (불포화토 칼럼시험을 통한 연속강우와 반복강우의 강우침투속도 분석)

  • Park, Kyu-Bo;Chae, Byung-Gon;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.133-145
    • /
    • 2011
  • Unsaturated soil column tests were performed for weathered gneiss soil and weathered granite soil to assess the relationship between infiltration velocity and rainfall condition for different rainfall durations and for multiple rainfall events separated by dry periods of various lengths (herein, 'rainfall break duration'). The volumetric water content was measured using TDR (Time Domain Reflectometry) sensors at regular time intervals. For the column tests, rainfall intensity was 20 mm/h and we varied the rainfall duration and rainfall break duration. The unit weight of weathered gneiss soil was designed 1.21 $g/cm^3$, which is lower than the in situ unit weight without overflow in the column. The in situ unit weight for weathered granite soil was designed 1.35 $g/cm^3$. The initial infiltration velocity of precipitation for the two weathered soils under total amount of rainfall as much as 200 mm conditions was $2.090{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.692{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively. These rates are higher than the repeated-infiltration velocities of precipitation under total amount of rainfall as much as 100 mm conditions ($1.309{\times}10^{-3}$ to $1.871{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $1.581{\times}10^{-3}$ cm/s, respectively), because the amount of precipitation under 200 mm conditions is more than that under 100 mm conditions. The repeated-infiltration velocities of weathered gneiss soil and weathered granite soil were $1.309{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively, being higher than the first-infiltration velocities ($1.307{\times}10^{-2}$ to $1.718{\times}10^{-2}$ cm/s and $1.789{\times}10^{-2}$ to $2.070{\times}10^{-2}$ cm/s, respectively). The results reflect the effect of reduced matric suction due to a reduction in the amount of air in the soil.

Application of Automatic Stormwater Monitoring System and SWMM Model for Estimation of Urban Pollutant Loading During Storm Events (빗물 자동모니터링장치와 SWMM 모델을 이용한 강우시 도시지역 오염부하량 예측에 관한 연구)

  • Seo, Dongil;Fang, Tiehu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.373-381
    • /
    • 2012
  • An automatic flow and water quality monitoring system was applied to estimate pollutant loads to an urban stream during storm events in DTV (Daeduk Techno Valley), Daejeon, Korea. The monitoring system consists of rainfall gage, ultrasonic water level meter, water quality sensors for DO, temperature, pH, conductivity, turbidity and automatic water sampler for further laboratory analysis. All data are transmitted through on-line system and the monitoring system is designed to be controlled manually in the field and remotely from laboratory computer. Flow rates were verified with field measurements during storm events and showed good agreements. Automatic sampler was used to collect real time samples and analyzed for BOD, COD, TN, TP, SS and other pollutant concentrations in the laboratory. SWMM (Storm Water Management Model) urban watershed model was applied and calibrated using the observed flow and water quality data for the study area. While flow modeling results showed good agreement for all events, water quality modeling results showed variable levels of agreement. These results indicate that current options in the SWMM model to predict pollutant build up and wash-off effects are not sufficient to satisfy modeling of all the rainfall events under study and thus need further modification. This study showed the automatic monitoring system can be used to provide data to assist further refinement of modeling accuracy. This automatic stormwater monitoring and modeling system can be used to develop basin scale water quality management strategies of urban streams in storm events.

Empirical Research on Improving Traffic Cone Considering LiDAR's Characteristics (LiDAR의 특성을 고려한 자율주행 대응 교통콘 개선 실증 연구)

  • Kim, Jiyoon;Kim, Jisoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.253-273
    • /
    • 2022
  • Automated vehicles rely on information collected through sensors to drive. Therefore, the uncertainty of the information collected from a sensor is an important to address. To this end, research is conducted in the field of road and traffic to solve the uncertainty of these sensors through infrastructure or facilities. Therefore, this study developed a traffic cone that can maintaing the gaze guidance function in the construction site by securing sufficient LiDAR detection performance even in rainy conditions and verified its improvement effect through demonstration. Two types of cones were manufactured, a cross-type and a flat-type, to increase the reflective performance compared to an existing cone. The demonstration confirms that the flat-type traffic cone has better detection performance than an existing cone, even in 50 mm/h rainfall, which affects a driver's field of vision. In addition, it was confirmed that the detection level on a clear day was maintained at the 20 mm/h rain for both cones. In the future, improvement measures should be developed so that the traffic cones, that can improve the safety of automated driving, can be applied.

Rain Sensor using Scattered Light Outside Waveguide (광도파관 외부산란광을 이용한 우적감지 센서)

  • Choi, Kyoo-Nam
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.22-27
    • /
    • 2011
  • Rain sensor detecting the presence of rain outside windshield glass of automobile by receiving scattered light from rain drops is proposed. Rain sensor using windshield glass as light waveguide required precision optical apparatus to inject light signal into windshield glass, and it was susceptible to outside shock and vibration, resulting malfunction, which altered optical coupling ratio. Proposed rain sensor, which detected scattered light from rain drops outside optical waveguide, did not require optical components because it did not need to inject light signal into light waveguide. This was advantageous because the sensor was less effected by shock and vibration. Fabricated rain sensor using scattered light outside waveguide responded not only to rain drops but also mist particles under simulated rain conditions using spraying nozzle, thus it showed prospects as rain sensor for automobile application.