• Title/Summary/Keyword: 강우 성장

Search Result 151, Processing Time 0.025 seconds

Seasonal Phytoplankton Growth and Distribution Pattern by Environmental Factor Changes in Inner and Outer Bay of Ulsan, Korea (울산만 내측과 외측에서 계절적 환경요인의 변화에 의한 식물플랑크톤 성장 및 분포)

  • LEE, MIN-JI;KIM, DONGSEON;KIM, YOUNG OK;SOHN, MOONHO;MOON, CHANG-HO;BAEK, SEUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.1
    • /
    • pp.24-35
    • /
    • 2016
  • To assess the relationship between environmental factors and seasonal phytoplankton community structure, we investigated abiotic and biotic factors in Ulsan Bay, Korea. We divided the bay into two areas based on geographical characteristics and compared the difference in each factor between inner and outer bay with t-test statistics. As a result, temperature in the outer bay was higher than that of the inner bay during winter (t = -5.833, p < 0.01) and autumn (p > 0.05). However, opposite trend was observed during spring (t = 4.247, p < 0.01) and summer (t = 2.876, p < 0.05). Salinity was significantly lower in the inner bay than in the outer bay in winter, spring, and summer (p < 0.01). However, the salinity was not significantly different between the inner and the outer bay in the autumn (p > 0.05). In particular, high nutrient concentration was observed in most stations during winter season due to vertical well mixing. The nutrient concentration was significantly higher in surface layers of inner bay after rainfall, particularly in the summer. The relative contribution (approximately 70%) of < $20{\mu}m$ (nano and pico) size phytoplankton was increased in all seasons with continuously low nutrients from the offshore water due to their adaption to low nutrient without other large competitors. Interestingly, high population of Eutreptiella gymnastica was kept in the inner bay during the spring and summer associated with high DIN (nitrate+nitrite, ammonium) after river discharge following rainfall, suggesting that DIN supply might have triggered the increase of Eutreptiella gymnastica population. In addition, high density of freshwater species Oscillatoria sp. and Microcystis sp. were found in several stations of the inner bay that were provided with large amounts of freshwater from the Tae-wha River. Diatom and cryptophyta species were found to be dominant species in the autumn and winter. Of these, centric diatom Chaetoceros genus was occupied in the outer bay in the autumn. Cryptophyta species known as opportunistic micro-algae were found to have high biomass without competitors in the inner bay. Our results demonstrated that Ulsan Bay was strongly affected by freshwater from Tae-wha River during the rainy season and by the surface warm water current from the offshore of the bay during dry season. These two external factors might play important roles in regulating the seasonal phytoplankton community structures.

Influences of Seasonal Rainfall on Physical, Chemical and Biological Conditions Near the Intake Tower of Taechung Reservoir (대청호의 취수탑 주변의 이화학적${\cdot}$생물학적 상태에 대한 계절강우의 영향)

  • Seo, Jin-Won;Park, Seok-Soon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.327-336
    • /
    • 2001
  • Physical, chemical, and biological parameters were measured during the period from July 1993 to August 1994 near the Munui intake tower of Taechung Reservoir to evaluate effects of nutrients and suspended solids on algal chlorophyll-a and water clarity. Large amounts of precipitation during summer 1993 produced minimum conductivity ($88\;{\mu}S/cm$), minimum TN : TP (<40), and maximum total phosphorus (TP;$59\;{\mu}g/L$) and resulted in a chlorophyll-a peak ($79\;{\mu}g/L$) and minimum transparency (<1.5 m) among the seasons. At the same time, ratios of volatile suspended solids (VSS): non-volatile suspended solids (NVSS) were maximum (13.0),indicating that the reduced transparency was mainly attributed to biogenic turbidity in relation to phytoplankton growth. In contrast, severe drought in summer 1994 resulted in greater conductivity (>$120\;{\mu}S/cm$), water clarity (%gt;2 m), and lower TP and chlorophyll- a (<$10\;{\mu}g/L$) relative to those of summer 1993. Total phosphorus ($R^2=0.46$, n=59) accounted more variations of chlorophyll- a compared to total nitrogen ($R^2=0,29$, n=59). The mass ratios of TN : TP ranged from 39 to 222 and were strongly correlated with TP (r = -0.80) but not with concentrations of TN (r = 0.05). Ambient nutrient concentrations and TN : TP mass ratios indicated that seasonality of chlorophyll- a was likely determined by concentrations of phosphorus reflected by the distribution of rainfall. It was concluded that reductions of phosphorus during heavy rainfall may provide better water quality for the drinking water in the intake tower.

  • PDF

The Planning Process and Simulation for Low Impact Development(LID) in Waterfront Area (수변지역에서의 저영향개발기법(LID) 적용을 위한 계획과정 도출 및 모의효과)

  • Kim, Dong Hyun;Choi, Hee-Sun
    • Journal of Environmental Policy
    • /
    • v.12 no.1
    • /
    • pp.37-58
    • /
    • 2013
  • In recently, the low impact development(LID) is discussed at various fields being related to urban stormwater, non-point source pollution, and quality of life. It is understood as an integrated development tool to induce sustainable development with various value-social, economic, and aesthetic. As concerning the development of waterfront area, the low impact development is interested in environmental planning. But the planning process and factors are not considered in precedent research. This study has two purposes. The one is to understand the planning process and factors of low impact development from literature review. The other is to apply the planning factors using case study and to know the effect of low impact development as the simulation plan. The simulation plan is based on some landuse planning. It is divided into the setting the region for environmental protection and the function of public facilities, spatial planning for enlarging permeable area, and spatial planning for circulation of water. The simulation model uses the LIDMOD2. The 14 planning factors of low impact development is applied to case region. And the effect is about 7~10 percent in reduction of nonpoint source pollution and surface runoff.

  • PDF

Analysis of Nutrients Balance during Paddy Rice Cultivation (수도재배시 논에서의 영양물질 수지 분석)

  • Hwang, Ha-Sun;Jeon, Ji-Hong;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.66-73
    • /
    • 2003
  • Field experimental study was performed to evaluate water and nutrient balances in paddy rice culture. The water balance showed that outflow generally balanced the inflow showing that about half (47${\sim}$54%) of total outflow was lost by surface drainage. No significant effect of fertilization rate was observed from three treatments (150%, 100%, and 70% of standard fertilization) on both rice yield and nutrient outflow from surface drainage. Therefore, reducing nonpoint source nutrient loading by reducing fertilization may not work well in the range of normal paddy rice farming practice, and instead it could be achieved by reducing surface drainage outflow. Water-saving irrigation by reducing pending depth, raising ridge height in rice field, and minimizing forced surface drainage are suggested to reduce surface drainage outflow. These practices can save water and protect water quality, however, deviation from conventional standard practices might affect the rice yield and further investigations are necessary. It was demonstrated that rainfall affects nutrient net outflow and paddy rice culture might be beneficial to wafer quality protection under normal rainfall condition.

Development of a Multifunctional Design Concept to Improve Constructed Wetland Performance (인공습지의 성능향상을 위한 다기능 설계기법 개발)

  • Reyes, N.J.D.G.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • Constructed wetlands (CWs) are widely used to solve water quality problems caused by diffuse pollution from agricultural areas; however, phytoplankton blooms in CW systems can occur due to long hydraulic retention time (HRT), high nutrient loading, and exposure to sunlight. This study was conducted to evaluate the efficiency of a CW designed to treat agricultural diffuse pollution and develop a design concept to improve the nature-based capabilities of the system. Monitoring was conducted to assess contribution of individual wetland components (i.e. water, sediments, and plants) in the treatment performance of the system. During dry days, the turbidity and particulates concentration in the CW increased by 80 to 197% and 10 to 87%, respectively, due to the excessive growth of phytoplankton. On storm events, the concentration of particulates, organics, and nutrients were reduced by 43% to 70%, 22% to 49%, and 15% to 69% due to adequate water circulation and constant flushing of pollutants in the system. Based on the results, adequate water circulation is necessary to improve the performance of the CW. Free water surface CWs are usually designed to have a constant water level; however, the climate in South Korea is characterized by distinct dry and rainy seasons, which may not be suitable for this conventional design. This study presented a concept of multifunctional design in order to solve current CW design problems and improve the flood control, water quality management, and environmental functions of the facility.

Long Term Variations and Environment Factors of Zooplankton Community in Lake Soyang (소양호 동물플랑크톤 군집의 장기변동과 환경요인: 2003~2014)

  • Kim, Moon Sook;Kim, Bomchul;Jun, Man-Sig
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.29-39
    • /
    • 2018
  • Long-term variation of zooplankton community and species composition was studied from 2003 to 2014 in a deep reservoir, Lake Soyang, in monsoon climate region, Korea. In addition, we examined the correlation with environmental factors. Annual precipitation of watershed showed a large variation in the $705{\sim}1,779mm\;yr^{-1}$ and more than 70% of it was being concentrated from June to September. The water quality of Lake Soyang was shown a clearly seasonal variations and particularly turbid water flowing into the lake during rainy season was the most important environmental factors. Zooplankton community in Lake Soyang showed a significant difference before and after 2006. Zooplankton biomass has shown a large increase and also showed a change in the zooplankton community structure since 2006. The of zooplankton showed positive correlation with temperature and BOD, Chl. a, TP concentration. These results are considered that nutrient and organic matter contained in the turbid water influences the increase in zooplankton biomass and species composition. However, water quality was limited to account for the increase in biomass of zooplankton. For example, increase of small zooplankton density (rotifer; Keratella cochlearis, Polyarthra vulgaris) in spring which is dominated by diatoms (large size; Melosira, Synedra etc.) is considered as a bottom-up effect by the microbial loop. And increased density of crustaceans in autumn was considered a top-down effects by the relationship between predator and prey of microzooplankton and mesozooplankton. In other words the inflow of allochthonous organic matter during rainy season also affected to zooplankton food web in Lake Soyang. In conclusion, biomass, diversity and long-term variations of zooplankton in Lake Soyang were determined by physico-chemical factors but also it is considered that biological interactions is important.

Proposing a Technique for Regional Flood Frequency Analysis: Bayesian-GLS Regression (국내 지역 홍수빈도해석을 위한 기법 제안: Bayesian-GLS 회귀)

  • Jeong, Dae-Il;Stedinger, Jery R.;Kim, Young-Oh;Sung, Jang-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.241-245
    • /
    • 2007
  • 국내 홍수빈도 분포의 매개변수 추정에서 지점추정(at-site estimate) 방법은 유량 자료의 부족으로 발생하는 표본오차(sampling error)가 크기 때문에 충분한 유량 자료를 보유한 지점에 한하여 제한적으로 사용되고 있다. 대안으로 동질성을 가진 유역의 유량 자료를 모아 지역 매개변수를 추정하는 지수홍수법(Index Flood Method)이 제안되기도 하였으나, 이질성이 큰 우리나라의 유역특성 때문에 적용이 쉽지 않다. Stedinger와 Tasker가 1986년 제안한 GLS(Generalized Least Square) 기법은 유역을 동질지역으로 구분할 필요가 없으며 지점들간의 상관관계와 이분산성을 고려할 수 있어, 국내 홍수빈도 해석을 위해서 꼭 도입해야할 기법으로 생각된다. 본 연구에서는 기존의 GLS 기법의 단점을 보완한 Bayesian-GLS 기법을 이용하여, 국내 대유역에 골고루 위치하며 댐의 영향을 받지 않는 31개 지점의 연최대 일유량 시계열의 L-변동계수(L-moment coefficient variation)와 L-왜도계수(L-moment coefficient skewness)를 추정할 수 있는 회귀모형을 제안하였다. 위 회귀모형을 구성하기 위한 유역특성으로는 유역면적, 유역경사, 유역평균강우 등을 사용하였다. Bayesian-GLS (B-GLS) 적용 결과를 OLS(Ordinary Least Square) 및 Bayesian-GLS 기법에서 지점간의 상관관계를 고려하지 않는 Bayesian-WLS(Weighted Least Square)와 비교 평가하여 그 우수성을 입증하였다. 따라서 본 연구에서 제안된 B-GLS에 의한 지역회귀모형은 국내의 미계측유역이나 또는 관측 길이가 짧은 계측유역의 홍수빈도분석을 위해 매우 유용할 것으로 기대된다.년 홍수 피해가 발생하고 있지만, 다른 한편 인구밀도가 높고 1인당 가용 수자원이 상대적으로 적기 때문에 국지적 물 부족 문제를 경험하고 있다. 최근 국제적으로도 농업용수의 물 낭비 최소화와 절약 노력 및 타 분야 물 수요 증대에 대한 대응 능력 제고가 매우 중요한 과제로 부각되고 있다. 2006년 3월 멕시코에서 개최된 제4차 세계 물 포럼에서 국제 강 네트워크는 "세계 물 위기의 주범은 농경지", "농민들은 모든 물 위기 논의에서 핵심"이라고 주장하고, 전 프랑스 총리 미셀 로카르는 "...관개시설에 큰 문제점이 있고 덜 조방적 농업을 하도록 농민들을 설득해야 한다. 이는 전체 농경법을 바꾸는 문제..."(segye.com, 2006. 3. 19)라고 주장하는 등 세계 물 문제 해결을 위해서는 농업용수의 효율적 이용 관리가 중요함을 강조하였다. 본 연구는 이러한 국내외 여건 및 정책 환경 변화에 적극적으로 대처하고 물 분쟁에 따른 갈등해소 전략 수립과 효율적인 물 배분 및 이용을 위한 기초연구로서 농업용수 수리권과 관련된 법 및 제도를 분석하였다.. 삼요소의 시용 시험결과 그 적량은 10a당 질소 10kg, 인산 5kg, 및 가리 6kg 정도였으며 질소는 8kg 이상의 경우에는 분시할수록 비효가 높았으며 특히 벼의 후기 중점시비에 의하여 1수영화수와 결실율의 증대가 크게 이루어졌다. 3. 파종기와 파종량에 관한 시험결과는 공시품종선단의 파종적기는 4월 25일부터 5월 10일경까지 인데 이 기간중 일찍 파종하는 경우에 파종적량은 10a당 약 8${\ell}$이고 늦은 경우에는 12${\ell}$ 정도였다. 여기서 늦게 파종한 경우 감수의 가장 큰 원인은 1수영화수가 적어지기 때문이었다. 4. 건답직파에 대한 담수상태로 관수를 시작하는 적기는 파종후

  • PDF

Analysis of the Controlling Factors of an Urban-type Landslide at Hwangryeong Mountain Based on Tree Growth Patterns and Geomorphology (부산 황령산에서의 수목 성장 및 지형 특성을 이용한 도시 산사태의 발생원인 분석)

  • Choi, Jin-Hyuck;Kim, Hyun-Tae;Oh, Jae-Yong;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.281-293
    • /
    • 2011
  • We investigated the causes and characteristics of a landslide at Hwangryeong Mountain, Busan, based on aerial photos, annual precipitation data, rock fracture patterns, and geomorphic features using GIS Software, and a statistical analysis of tilted trees. The analyzed slope shows evidence of a previous slope failure event and the possibility of future failures. Although the NW-SE trending slope was relatively stable until 1975, a large-scale slope failure occurred between 1975 and 1985 due to complex factors, including favorably oriented geologic structures, human activity, and heavy rain. This indicates that a detailed study of geologic structures, slope stability, and rainfall characteristics is important for slope cuttings that could be a major factor and cause of urban landsliding events. The statistic analysis of tilted trees shows a slow progressive creeping type of mass wasting with rock falls oblique to the dip of the slope, with the slope having moved towards the west since 1985. A concentration of tree tilting has developed on the northwestern part of the slope, which could reach critical levels in the future. The analysis of deformed trees is a useful tool for understanding landslides and for predicting and preventing future landslide events.

Correlation Analysis between Productivity of Forage Sorghum × Sudangrass Hybrids [Sorghum bicolor (L.) Moench] and Climatic Factors in Central Northern Region of South Korea (중북부지역에서 수수×수단그라스 교잡종의 생산성과 기후요인과의 상관분석)

  • Lee, Bae Hun;Park, Hyung Soo;Jung, Jeong Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.1
    • /
    • pp.41-46
    • /
    • 2021
  • Sorghum×sudangrass hybrid (Sorghum bicolor (L.) Moench, SSH) is one of the most important summer forage crop and it is widely used for silage in Korea. Agriculture is highly dependent on the climate condition and experiencing significant loss of productivity due to climate change. This study was conducted to investigate the correlation analysis between productivity of forage SSH and climatic factors in Central Northern region of South Korea for 3 years (2017 to 2019). Plant height and dry matter yield of SSH were significantly higher in Gyeonggi-do than Ganwon-do. The productivity of SSH is more closely related with temperature than other climatic factors. Maximum temperature and Growing degree days in May and June showed a positive correlation. However, correlation between production of SSH and precipitation was not clear in this study, but rainy days showed a negative correlation (0.42). In conclusion, temperature is most important climatic factor to the maintenance of plant yield.

Long-term runoff simulation using rainfall LSTM-MLP artificial neural network ensemble (LSTM - MLP 인공신경망 앙상블을 이용한 장기 강우유출모의)

  • An, Sungwook;Kang, Dongho;Sung, Janghyun;Kim, Byungsik
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.127-137
    • /
    • 2024
  • Physical models, which are often used for water resource management, are difficult to build and operate with input data and may involve the subjective views of users. In recent years, research using data-driven models such as machine learning has been actively conducted to compensate for these problems in the field of water resources, and in this study, an artificial neural network was used to simulate long-term rainfall runoff in the Osipcheon watershed in Samcheok-si, Gangwon-do. For this purpose, three input data groups (meteorological observations, daily precipitation and potential evapotranspiration, and daily precipitation - potential evapotranspiration) were constructed from meteorological data, and the results of training the LSTM (Long Short-term Memory) artificial neural network model were compared and analyzed. As a result, the performance of LSTM-Model 1 using only meteorological observations was the highest, and six LSTM-MLP ensemble models with MLP artificial neural networks were built to simulate long-term runoff in the Fifty Thousand Watershed. The comparison between the LSTM and LSTM-MLP models showed that both models had generally similar results, but the MAE, MSE, and RMSE of LSTM-MLP were reduced compared to LSTM, especially in the low-flow part. As the results of LSTM-MLP show an improvement in the low-flow part, it is judged that in the future, in addition to the LSTM-MLP model, various ensemble models such as CNN can be used to build physical models and create sulfur curves in large basins that take a long time to run and unmeasured basins that lack input data.