• Title/Summary/Keyword: 강수량예측

Search Result 582, Processing Time 0.039 seconds

Assessment of Climate Chanage Effect on Temperature and Drought in Seoul : Based on the AR4 SRES A2 Senario (기후변화가 서울지역의 기온 및 가뭄에 미치는 영향 평가 : AR4 SRES A2 시나리오를 기반으로)

  • Kyoung, Minsoo;Lee, Yongwon;Kim, Hungsoo;Kim, Byungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.181-191
    • /
    • 2009
  • This study suggests the assessment technique for climate change effect on drought in Korea based on the AR4 SRES A2 scenario reported in IPCC fourth assessment report in 2007. IPCC provides monthly outputs of 24 climate models through the DDC. One of the models is BCM2 model which was developed at BCCR in Norway and NCEP data is used for downscaling. The K-NN(K-Nearest Neighbor) and ANN(Artificial Neural Network) are selected as downscaling technique to downscale the temperature and precipitation at Seoul station in Korea. K-NN could downscale both temperature and precipitation well. ANN made a good result for temperature, but it gave a divergence result in precipitation. Finally, SPI of Seoul station is computed to evaluate the effect of climate change on drought. BCM2 predicted that temperature will increase and drought severity will increase because of the increased drought spell at Seoul station.

Climate Change Impact on Nonpoint Source Pollution in a Rural Small Watershed (기후변화에 따른 농촌 소유역에서의 비점오염 영향 분석)

  • Hwang, Sye-Woon;Jang, Tae-Il;Park, Seung-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.209-221
    • /
    • 2006
  • The purpose of this study is to analyze the effects of climate change on the nonpoint source pollution in a small watershed using a mid-range model. The study area is a basin in a rural area that covers 384 ha with a composition of 50% forest and 19% paddy. The hydrologic and water quality data were monitored from 1996 to 2004, and the feasibility of the GWLF (Generalized Watershed Loading function) model was examined in the agricultural small watershed using the data obtained from the study area. As one of the studies on climate change, KEI (Korea Environment Institute) has presented the monthly variation ratio of rainfall in Korea based on the climate change scenario for rainfall and temperature. These values and observed daily rainfall data of forty-one years from 1964 to 2004 in Suwon were used to generate daily weather data using the stochastic weather generator model (WGEN). Stream runoff was calibrated by the data of $1996{\sim}1999$ and was verified in $2002{\sim}2004$. The results were determination coeff, ($R^2$) of $0.70{\sim}0.91$ and root mean square error (RMSE) of $2.11{\sim}5.71$. Water quality simulation for SS, TN and TP showed $R^2$ values of 0.58, 0.47 and 0.62, respectively, The results for the impact of climate change on nonpoint source pollution show that if the factors of watershed are maintained as in the present circumstances, pollutant TN loads and TP would be expected to increase remarkably for the rainy season in the next fifty years.

Development of Hydrological Variables Forecast Technology Using Machine Learning based Long Short-Term Memory Network (기계학습 기반의 Long Short-Term Memory 네트워크를 활용한 수문인자 예측기술 개발)

  • Kim, Tae-Jeong;Jung, Min-Kyu;Hwang, Kyu-Nam;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.340-340
    • /
    • 2019
  • 지구온난화로 유발되는 기후변동성이 증가함에 따라서 정확한 수문인자의 예측은 전 세계적으로 주요 관심사항이 되고 있다. 최근에는 고성능 컴퓨터 자원의 증가로 수문기상학 연구에서 동일한 학습량에 비하여 정확도의 향상이 뚜렷한 기계학습 구조를 활용하여 위성영상 기반의 대기예측, 태풍위치 추적 및 강수량 예측 등의 연구가 활발하게 진행되고 있다. 본 연구에는 기계학습 중 시계열 분석에 널리 활용되고 있는 순환신경망(Recurrent Neural Network, RNN) 기법의 대표적인 LSTM(Long Short-Term Memory) 네트워크를 이용하여 수문인자를 예측하였다. LSTM 네트워크는 가중치 및 메모리 요소에 대한 추가정보를 셀 상태에 저장하고 시계열의 길이 조정하여 모형의 탄력적 활용이 가능하다. LSTM 네트워크를 이용한 다양한 수문인자 예측결과 RMSE의 개선을 확인하였다. 따라서 본 연구를 통하여 개발된 기계학습을 통한 수문인자 예측기술은 권역별 수계별 홍수 및 가뭄대응 계획을 능동적으로 수립하는데 활용될 것으로 판단된다. 향후 연구에서는 LSTM의 입력영역을 Bayesian 추론기법을 활용하여 구성함으로 학습과정의 불확실성을 정량적으로 제어하고자 한다.

  • PDF

Forecasting of Drought Based on Satellite Precipitation and Atmospheric Patterns Using Deep Learning Model (딥러닝 모델을 활용한 위성강수와 대기패턴 기반의 가뭄 예측)

  • Seung-Yeon Lee;Seok-Jae Hong;Seo-Yeon Park;Joo-Heon Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.336-336
    • /
    • 2023
  • 가뭄은 가장 심각한 기상 재해 중 하나로 농업 생산, 사회경제 등 다양한 분야에 영향을 미친다. 국내의 경우 광주·전남지역이 1990년대 이후 30년 만에 제한 급수 위기에 처하는 역대 최악의 가뭄으로 지역민들은 심각한 피해가 발생하였다. 유럽의 경우 2022년 당시 500년 만에 찾아온 가뭄으로 인해 3분의 2에 해당하는 지역이 피해를 입었으며, 미국 서부 지역은 2000년부터 2021년까지 1200년 만에 가장 극심한 대가뭄을 겪은 것으로 나타났다. 지구온난화에 따른 기후변화로 인해 가뭄의 빈도와 강도가 증가함에 따라 피해도 커질 것으로 예상된다. 가뭄의 부정적인 영향으로 인해 정확하고 신뢰할 수 있는 가뭄 예측 기술이 필요하다. 본 연구에서는 가뭄예측을 위한 입력변수로서 GPM IMERG (The Integrated Multi-satellitE Retrievals for GPM) 강수량 자료와 NOAA에서 제공하는 8가지 북반구 대기패턴 자료 간의 상관성을 분석하였다. 입력변수 간의 상관성과 중장기 가뭄 예측을 위하여 딥러닝 모델 중 시계열 데이터에서 높은 예측 성능을 보이는 LSTM(Long Short Term-Memory)을 적용하여 가뭄을 예측하고자 한다.

  • PDF

Forecasting of Drought Based on Satellite Precipitation and Atmospheric Patterns Using Deep Learning Model (딥러닝 모델을 활용한 위성강수와 대기패턴 기반의 가뭄 예측)

  • Seung-Yeon Lee;Seok-Jae Hong;Seo-Yeon Park;Joo-Heon Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.337-337
    • /
    • 2023
  • 가뭄은 가장 심각한 기상 재해 중 하나로 농업 생산, 사회경제 등 다양한 분야에 영향을 미친다. 국내의 경우 광주·전남지역이 1990년대 이후 30년 만에 제한 급수 위기에 처하는 역대 최악의 가뭄으로 지역민들은 심각한 피해가 발생하였다. 유럽의 경우 2022년 당시 500년 만에 찾아온 가뭄으로 인해 3분의 2에 해당하는 지역이 피해를 입었으며, 미국 서부 지역은 2000년부터 2021년까지 1200년 만에 가장 극심한 대가뭄을 겪은 것으로 나타났다. 지구온난화에 따른 기후변화로 인해 가뭄의 빈도와 강도가 증가함에 따라 피해도 커질 것으로 예상된다. 가뭄의 부정적인 영향으로 인해 정확하고 신뢰할 수 있는 가뭄 예측 기술이 필요하다. 본 연구에서는 가뭄예측을 위한 입력변수로서 GPM IMERG (The Integrated Multi-satellitE Retrievals for GPM) 강수량 자료와 NOAA에서 제공하는 8가지 북반구 대기패턴 자료 간의 상관성을 분석하였다. 입력변수 간의 상관성과 중장기 가뭄 예측을 위하여 딥러닝 모델 중 시계열 데이터에서 높은 예측 성능을 보이는 LSTM(Long Short Term-Memory)을 적용하여 가뭄을 예측하고자 한다.

  • PDF

Improving dam inflow prediction in LSTM-s2s model with luong attention (Attention 기법을 통한 LSTM-s2s 모델의 댐유입량 예측 개선)

  • Jonghyeok Lee;Yeonjoo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.226-226
    • /
    • 2023
  • 하천유량, 댐유입량 등을 예측하기 위해 다양한 Long Short-Term Memory (LSTM) 방법들이 활발하게 적용 및 개발되고 있다. 최근 연구들은 s2s (sequence-to-sequence), Attention 기법 등을 통해 LSTM의 성능을 개선할 수 있음을 제시하고 있다. 이에 따라 본 연구에서는 LSTM-s2s와 LSTM-s2s에 attention까지 첨가한 모델을 구축하고, 시간 단위 자료를 사용하여 유입량 예측을 수행하여, 이의 실제 댐 운영에 모델들의 활용 가능성을 확인하고자 하였다. 소양강댐 유역을 대상으로 2013년부터 2020년까지의 유입량 시자료와 종관기상관측기온 및 강수량 데이터를 학습, 검증, 평가로 나누어 훈련한 후, 모델의 성능 평가를 진행하였다. 최적 시퀀스 길이를 결정하기 위해 R2, RRMSE, CC, NSE, 그리고 PBIAS을 사용하였다. 분석 결과, LSTM-s2s 모델보다 attention까지 첨가한 모델이 전반적으로 성능이 우수했으며, attention 첨가 모델이 첨두값 예측에서도 높은 정확도를 보였다. 두 모델 모두 첨두값 발생 동안 유량 패턴을 잘 반영하였지만 세밀한 시간 단위 변화량 패턴 모의에는 한계가 있었다. 시간 단위 예측의 한계에도 불구하고, LSTM-s2s에 attention까지 추가한 모델은 향후 댐유입량 예측에 활용될 수 있을 것으로 판단한다.

  • PDF

Analysis of Global Precipitation CMORPH (광역적 강우자료 CMORPH 분석)

  • Kim, Joo-Hun;Kim, Kyeong-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.887-887
    • /
    • 2012
  • 기후변화에 의한 강우패턴의 변화는 강우량 및 강우강도의 증가로 대표되며 국립기상연구소 (2011)에 의하면 현재와 같은 탄소배출이 줄어들지 않는다면 2050년 우리나라의 강수량은 16% 증가하고 일 강수량 80mm 이상의 호우발생일수가 60%이상 증가될 것으로 전망하고 있다. 이와 같이 기후변화로 인해 발생빈도가 증가추세인 집중호우는 산사태와 같은 2차 피해를 유발하고 있으며 강우의 예측 및 실시간 모니터링은 재해 예방 및 수자원관리, 국가 방재역량 강화를 위해 연구되어야 할 분야이다. 이에 본 연구에서는 광역적 강우자료로서 미국 NOAA의 기후예측센터에 의해 제공되는 글로벌 강우량 CMORPH와 지상 강우자료와의 비교 분석을 통해 CMORPH 자료의 수자원 분야 이용 가능성을 분석하는 것을 목적으로 한다. CMORPH는 고급의 시공간적 해상도를 가지며, 단기간의 기후 예측센터 모핑(morphing) 방법에 의한 "CMORPH"라 불리우는 강우평가 알고리즘과 새로운 위성 기반 기술을 이용하여 개발되었다. CMORPH 기술에 의해 생산된 글로벌 강우 추정은 저궤도 위성 수동 마이크로파(passive microwaves, PMW) 관측으로부터 유도되고, 그 형태는 전적으로 정지궤도 위성(geostationary satellite) 적외선(IR) 데이터로부터 얻어진 공간적 전파 정보 (모션 벡터)를 통해 전송된다. 이 기술은 PMW 데이터로부터 유도된 비교적 고품질의 추정 강우를 전파하기 위하여 30분 간격의 정지궤도 위성 IR 이미지로부터 파생된 모션 벡터를 이용하며, 때때로 레이더보다 더 나은 성능을 보이기도 하고(Apip 등 2010), CMORPH의 지역적 제공범위는 $60^{\circ}N-60^{\circ}S$이고 2002년 12월부터 제공하고 있다. 본 연구에서는 CMORPH 자료 중 2002년 12월부터 제공하는 3시간 누가강우 자료를 수집하였고, 자료의 정확도 분석은 갑천유역을 대상으로 하였다. 3시간 누가 강우량을 1일 누가 강우량으로 변환한 후 금강홍수통제소의 갑천 유역 강우관측소 5곳의 강우자료를 티센 평균에 의한 유역 평균강우자료와 비교하였다. 2009년 1년간의 지상관측자료와 CMORPH자료를 비교한 결과 가 0.34 정도로 분석되었으나 추가 연구를 통해 마이크로 웨이브 강우자료 및 3시간 강우자료, 그리고 30분 강우자료의 분석을 통해 다양한 형태의 강우자료 확보뿐만 아니라 광역적인 강우특성 분석도 가능하여 연구 결과의 동아시아지역 등으로 확대 적용할 수 있을 것으로 기대한다.

  • PDF

A Multi-sensor basedVery Short-term Rainfall Forecasting using Radar and Satellite Data - A Case Study of the Busan and Gyeongnam Extreme Rainfall in August, 2014- (레이더-위성자료 이용 다중센서 기반 초단기 강우예측 - 2014년 8월 부산·경남 폭우사례를 중심으로 -)

  • Jang, Sangmin;Park, Kyungwon;Yoon, Sunkwon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.155-169
    • /
    • 2016
  • In this study, we developed a multi-sensor blending short-term rainfall forecasting technique using radar and satellite data during extreme rainfall occurrences in Busan and Gyeongnam region in August 2014. The Tropical Z-R relationship ($Z=32R^{1.65}$) has applied as a optimal radar Z-R relation, which is confirmed that the accuracy is improved during 20mm/h heavy rainfall. In addition, the multi-sensor blending technique has applied using radar and COMS (Communication, Ocean and Meteorological Satellite) data for quantitative precipitation estimation. The very-short-term rainfall forecasting performance was improved in 60 mm/h or more of the strong heavy rainfall events by multi-sensor blending. AWS (Automatic Weather System) and MAPLE data were used for verification of rainfall prediction accuracy. The results have ensured about 50% or more in accuracy of heavy rainfall prediction for 1-hour before rainfall prediction, which are correlations of 10-minute lead time have 0.80 to 0.53, and root mean square errors have 3.99 mm/h to 6.43 mm/h. Through this study, utilizing of multi-sensor blending techniques using radar and satellite data are possible to provide that would be more reliable very-short-term rainfall forecasting data. Further we need ongoing case studies and prediction and estimation of quantitative precipitation by multi-sensor blending is required as well as improving the satellite rainfall estimation algorithm.

Change Prediction for Potential Habitats of Warm-temperate Evergreen Broad-leaved Trees in Korea by Climate Change (기후변화에 따른 한반도 난온대 상록활엽수의 잠재 생육지 변화 예측)

  • Yun, Jong-Hak;Nakao, Katsuhiro;Park, Chan-Ho;Lee, Byoung-Yoon;Oh, Kyoung-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.4
    • /
    • pp.590-600
    • /
    • 2011
  • The research was carried out for prediction of the potential habitats of warm-temperate evergreen broad-leaved trees under the current climate(1961~1990) and three climate change scenario(2081~2100) (CCCMA-A2, CSIRO-A2 and HADCM3-A2) using classification tree(CT) model. Presence/absence records of warm-temperate evergreen broad-leaved trees were extracted from actual distribution data as response variables, and four climatic variables (warmth index, WI; minimum temperature of the coldest month, TMC; summer precipitation, PRS; and winter precipitation, PRW) were used as predictor variables. Potential habitats(PH) was predicted 28,230$km^2$ under the current climate and 77,140~89,285$km^2$ under the three climate change scenarios. The PH masked by land use(PHLU) was predicted 8,274$km^2$ and the proportion of PHLU within PH was 29.3% under the current climate. The PH masked by land use(PHLU) was predicted 35,177~45,170$km^2$ and increased 26.9~36.9% under the three climate change scenarios. The expansion of warm-temperate evergreen broad-leaved trees by climate change progressed habitat fragmentation by restriction of land use. The habitats increase of warm-temperate evergreen broad-leaved trees had been expected competitive with warm-temperate deciduous broadleaf forest and suggested the expand and northward shift of warm-temperate evergreen broad-leaved forest zone.

Intercomparison of uncertainty to bias correction methods and GCM selection in precipitation projections (강수량예측에서 편이보정방법과 GCM 선택에 대한 불확실성 비교)

  • Song, Young Hoon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.249-258
    • /
    • 2020
  • Many climate studies have used the general circulation models (GCMs) for climate change, which can be currently available more than sixty GCMs as part of the Assessment Report (AR5). There are several types of uncertainty in climate studies using GCMs. Various studies are currently being conducted to reduce the uncertainty associated with GCMs, and the bias correction method used to reduce the difference between the simulated and the observed rainfall. Therefore, this study mainly considered climate change scenarios from nine GCMs, and then quantile mapping methods were applied to correct biases in climate change scenarios for each station during the historical period (1970-2005). Moreover, the monthly rainfall for the future period (2011-2100) is obtained from the RCP 4.5 scenario. Based on the bias-corrected rainfall, the standard deviation and the inter-quartile range (IQR) from the first to third quartiles were estimated. For 2071-2100, the uncertainty for the selection of GCMs is larger than that for the selection of bias correction methods and vice versa for 2011-2040. Therefore, this study showed that the selection of GCMs and the bias correction methods can affect the result for the future climate projection.