• Title/Summary/Keyword: 강소성유한요소해석

Search Result 82, Processing Time 0.024 seconds

A Study on the Crack Tip Plastic Region for Stable Crack Growth -304 Stainless Steel- (안정군열성장에 대한 군열선단 소성역에 관한 연구 -304 스테인리스 강-)

  • 황갑운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1183-1192
    • /
    • 1989
  • 본 논문에서는 평면변형률 상태하에서 안정하게 성장하는 균열선단에 집중 되어있는 강소성역의 해석에 역점을 두어 재결정법과 탄.소성유한요소법을 도입하여 안정 성장균열 선단에 형성되는 균열 성장저항에 직접적인 영향을 미치고 있는 소성 역의 크기나 형태에 대한 실험 및 해석을 하였다.

Sectional Forming Analysis of Automobile Sheet Metal Parts by using Rigid-Plastic Explicit Finite Element Method (강소성 외연적 유한요소법을 이용한 자동차 박판제품의 성형공정에 대한 단면해석)

  • Ahn, D.G.;Jung, D.W.;Yang, D.Y.;Lee, J.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.19-28
    • /
    • 1995
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modelling of material requiring large computation time. In the present work, rigid-plastic explicit finite element method is introduced for analysis of sheet metal forming processes in which plane strain normal anisotropy condition can be assumed by dividing the whole piece into sections. The explicit scheme is in good agreement with the implicit scheme for numerical analysis and experimental results of auto-body panels. The proposed rigid-plastic explicit finite element method can be used as robust and efficient computational method for prediction of defects and forming severity.

  • PDF

Analysis of Deep Drawing of Planar Anisotropic Materials Using the Rigid- Plastic Finite Element Method (강소성 유한요소법을 이용한 평면 이방성 재료의 디프 드로잉 해석)

  • 김형종;김동원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.248-258
    • /
    • 1992
  • Three-dimensional rigid-plastic finite element formulation based on the membrane theory was described and a computer program for large deformation analysis was developed. In the formulation, normal and planar anisotropy of sheet material and rotation of the principal axes of anisotropy was taken into consideration. Sheet metal was assumed to be rigid-plastic material obeying Hill's quadratic yield criterion and its associated flow rule. Deep drawing process, as a preliminary test, for normal anisotropic material was analyzed in order to examine the validity of developed finite element program. The results were consistent with the existing finite element solutions or experimental data. The present study was mainly concerned with the influence of planar anisotropy on deformation behaviour. Finite element analysis and experiment were carried out for the whole process of deep drawing of planar anisotropic material. The computational and experimental results on the shape of ear, strain distribution and punch load were in good agreement.

Hourglass Control in Rigid-Plastic Finite Element Analysis (강소성 유한요소해석에서 Hourglass Control)

  • Gang, Jeong-Jin;O, Su-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1290-1300
    • /
    • 1996
  • The finite element method, based on rigid-plastic formulation, is widely used to simulate metal forming processes. In order to improve the computational efficiency of the rigid-plastic FEM, one-point integration is used to evaluate the stiffness matrix with four-node rectangular elements and eight-node brick elements. In order to control the hourglass modes, hourglass strain rate components were introduced and included in the effective strain rate definition, Numerical tests have shown that the proposed one-point integration scheme reduces the stiffness matrix evaluation time without deteriorating the convergence behavior of Newton-Raphson method. Simulations of a ring compression, a plane-strain closed-die forging and the three-dimensional spike forging processes were carried out by using the proposed integration method. The simulation results are compared to those obtained by applying the conventional integraiton method in terms of the solution accuracy and computational efficiency.

A Study on the Flow Behaviors of the Multi-Pass Ironing Process by the Finite Element Method (유한 요소법을 이용한 다단식 아이어닝 공정의 유동특성에관한 연구)

  • 양동열;이성근;이경훈
    • The Korean Journal of Rheology
    • /
    • v.1 no.1
    • /
    • pp.36-45
    • /
    • 1989
  • 아이어닝 공정은 제품의 치수정밀도가 정확하게 조절괴는 정밀 금속 성형공정이다. 아이어닝 공정은 대개 냉간상태에서 행하여지며 그리고 때로는 단공정 대신에 다단식이 적 용된다. 본연구의 목적은 강소성 유한 요소법으로 단공정과 다단식 아이어닝 공정을 해석하 여 아이어닝 공정에 대한 적절한 설계변수와 최적 설계조건을 찾는데 있다. 본 연구에서는 공정설계게 있어서 공정변수를 다이의 원추각과 단의 개수로 주었다. 본 해석에서는 단공정 아이어닝과 다단식 아이어닝 공정의 성형하중, 응력과 변형도 분포 그리고 격자 변형을 계 산하였다 그리고 이 값들에 대한 공정 변수의 영향을 검토한 결과 성형하중과 격자 변형에 있어서 계산 결과와 잘 일치하였다.

  • PDF

Optimal Design of the Forging Processes of Flare Nut for Automobiles using Finite Element Analysis (유한요소해석에 의한 승용차용 플레어 너트 단조공정의 최적설계)

  • 추덕열;한규택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.83-89
    • /
    • 2004
  • Flare nut is an important Part that used to joint a brake tube-end in automobiles. It was made of SWCH 10A by machining. But we studied to make it by metal forming. The main focus of this paper is to investigate an optimal forging processes for flare nut using the DEFORM$^{TM}$-3D. commercially available finite element code and tests. Actually an explicit finite element analysis of the flare nut forging processes has been carried out to predict an optimal shape of the flare nut and its results were reflected in the tests of the forging processes design for flare nut. The simulation results which had obtained from finite element analysis were contributed to the forging processes design for flare nut. An optimal shape of nave nut showed agreements with test results. Furthermore. this paper should contribute to a development of the forging process for a variety of parts.s.

Forward Projection Using Fuzzy Logic in Axisymmetric Finite Element Simulation for Cold Forging (축대칭 냉간단조의 유한요소해석에서 퍼지로직을 이용한 전방투사법)

  • 정낙면;이낙규;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1468-1484
    • /
    • 1992
  • In the present paper forward projection is proposed as a new approach to determine the preform shape in rib-web type forging. In the forward projection technique an optimal billet is determined by applying some mathematical relationship between geometrical trials in the initial billet shape and the final products. In forward projection a volume difference between the desired product shape and the final computed shape obtained by the rigid-plastic finite element method is used as a measure of incomplete filling of working material in the die. At first linear inter-/extrapolation is employed to find a proper trial shape for the initial billet and the method is successfully applied to some cases of different aspect ratios of the initial billet. However, when the initial guesses are not sufficiently near the optimal value linear inter-/extrapolation does not render complete die filling. For more general application, a fuzzy system is used in the forward projection technique in order to determine the initial billet shape for rib-web type forging. It has been thus shown that the fuzzy system is more reliable for the preform design in the rib-web type forging process.

Finite element analysis of unconstrained axisymmetric piercing (구속이 없는 축대칭 피어싱 공정의 유한요소해석)

  • 양동열;유요한;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.876-888
    • /
    • 1986
  • The Study is concerned with the analysis of unconstrained axisymmetric piercing as a nonsteady forging process by the rigid-plastic finite element method. In the numerical analysis of axisymmetric piercing, the initial velocity field is generated by assuming the material as a linear viscous material to begin with in order to facilitate the input handling and to ensure better convergencey. The strain-hardening effect for nonsteady deformation and the friction of the die-material interial interface are considered in the formulation. Rigid body treatment is also incorporated in the developed program. The experiments are carried out for aluminum alloy specimens (A1204) with different specimen heights. It is shown that the experimental results are in excellent agreement with the finite element simulations is deformed configuration. For load prediction the theoretical prediction shows excellent agreement with th eexperimental laod in the initial stage of loading before fracture of the specimen is not initiated. Distribution of stresses, strains and strain rates has been found for the given cases in computation. On this basis several fracture criteria are introduced in order to check the fracture initiation. It is found that maximum shear criterion is capable of good fracture prediciton.

An Investigation on the Forging Process of an Irregular Shape Product (비대칭 형상제품의 단조공정에 관한 연구)

  • 정경빈;김현수;최영순;김용조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1101-1104
    • /
    • 2004
  • A brake spider in an irregular shape, which is used as a part in the braking system of a vehicle like a big truck and a trailer, is subjected to a large torque and hence requires both strength and endurance over the brake heat. Manufacture of this product in practice is generally composed of hot forging processes and machining. At the present study, two or more processes were considered for the hot forging. With an initial circular billet, blocker and finisher processes were analyzed using the rigid-plastic finite element method and also in addition to the preforming process. Proper forging processes to manufacture an irregular product without forging defects, which are preforming, blocker and finisher, were discussed and commented upon.

  • PDF

Forging Process Design for Dimensional Accuracy of an Irregular Shape Product (치수 정밀도 향상을 위한 비대칭 정밀제품의 단조공정 설계)

  • 이선홍;최창혁;김성태;김용조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1097-1100
    • /
    • 2004
  • A rear axle spider in an irregular shape, which is used as a part in the braking system of a vehicle like a big truck and a trailer, is subjected to a large torque and hence requires both strength and endurance over the brake heat. This part should be therefore manufactured in dimensional accuracy. The practical manufacturing process of this irregular product requires the heat treatment process after hot forging and then the cold coining process for the dimensional accuracy. At the present study, the warm coning without the heat treatment process was proposed to employ the residual heat due to the hot forging process. And also the trimming and piercing process was designed using the rigid-plastic finite element method. The mechanical properties were discussed and also commented upon.

  • PDF