DOI QR코드

DOI QR Code

Pullout Characteristics of Waste Fishing Net Reinforced Bottom Ash using Pullout Test

인발시험에 의한 저회에 보강된 폐어망의 인발특성 연구

  • Received : 2013.09.16
  • Accepted : 2013.12.16
  • Published : 2013.12.30

Abstract

In this study, pullout tests were carried out to evaluate pullout characteristics of waste fishing net (WFN), which added into bottom ash for recycling both bottom ash and WFN. Three different mesh size of WFN (WFN20:$20mm{\times}20mm$, WFN30:$30mm{\times}30mm$, WFN40:$40mm{\times}40mm$) and geogrid were added as a reinforcement. Pullout characteristics of waste fishing net were compared with those of the geogrid. Pullout test results showed that pullout strength and stiffness of WFN20 are a little less than those of geogrid. However, the pullout friction angle of WFN20 is similar to that of geogrid due to bearing resistance induced from transverse rib because thickness of WFN20 is greater than geogrid. Pullout test results also indicated that distribution of residual strain along reinforcement after test depends on overburden stress. Residual strain at the tip of reinforcement increased with an increase in overburden stress due to concentration of pullout force on the tip of reinforcement.

본 연구에서는 산업폐기물인 저회와 폐어망을 각각 뒤채움 재료와 보강재로 재활용하기 위하여 저회와 폐어망 사이의 인발특성을 분석하였다. 이를 위해 저회로 구성된 지반에 망목크기가 다른 3종류의 폐어망(WFN20 : $20mm{\times}20mm$, WFN30 : $30mm{\times}30mm$, WFN40 : $40mm{\times}40mm$)과 지오그리드를 보강재로 사용하여 인발시험을 수행하였다. 인발시험 수행 결과, 지오그리드와 동일한 망목크기를 갖는 WFN20의 인발마찰각은 지오그리드와 유사하게 나타났다. 이것은 WFN20의 인장강도와 강성은 지오그리드 보다 작으나, WFN20의 두께가 지오그리드 보다 커서 횡리브에 의한 지지력이 발현되었기 때문이다. 보강재의 잔류변형률 분포는 연직응력에 의존한다. 연직응력이 증가함에 따라 보강재 선단에 인발력이 크게 집중되어 변형이 크게 나타난다.

Keywords

References

  1. Abdelouhab, A., Dias, D. and Freitag, N. (2010), "Physical and Analytical Modelling of Geosynthetic Strip Pull-out Behaviour", Geotextiles and Geomembranes, Vol.28, No.1, pp.44-53. https://doi.org/10.1016/j.geotexmem.2009.09.018
  2. Abdi, M. R. and Arjomand, M. A. (2011), "Pullout Tests Conducted on Clay Reinforced with Geogrid Encapsulated in Thin Layers of Sand", Geotextiles and Geomembranes, Vol.29, No.6, pp.588-595. https://doi.org/10.1016/j.geotexmem.2011.04.004
  3. Alagiyawanna, A. M. N., Sogimoto, M., Sato, S. and Toyota, H. (2001), "Influence of Longitudinal and Transverse Members on Geogrid Pullout Behavior during Deformation", Geotextiles and Geomembranes, Vol.19, No.8, pp.483-507. https://doi.org/10.1016/S0266-1144(01)00020-6
  4. Anubhav and Basudhar, P. K. (2010), "Modeling of Soil-Woven Geotextile Interface Behavior from Direct Shear Test Result", Geotextiles and Geomembranes, Vol.28, No.4, pp. 403-408. https://doi.org/10.1016/j.geotexmem.2009.12.005
  5. Chae, D. R. (2012), A Study on the Damage Reduction of Marine litter of Gyeong-nam, Gyeong-nam Development Institute.
  6. Cho, S. D. and Kim, J. M. (1996), "Evaluation of Weathered Granite Soil/Geogrid Friction Properties and Pull-out Test", Korean Geotechnical Society Vol.12, No.4, pp.87-99.
  7. Chun, B. S., Lee, E. S. and Koh, Y. I. (1992), "The Strength and Durability of Compacted Coal Ash with Proper Mixing Ratio of Fly Ash to Bottom Ash", Korean Society of Civil Engineers, Vol.12, No.3, pp.207-213.
  8. Chun, B. S. and Yeoh, Y. H. (2000), "A Study on the Recycling of Coal Ash as Structural Backfill Materials", The Korean Society of Ocean Engineers, Vol.14, No.1, pp.74-79.
  9. Hsieh, C. and Hsieh, M. W. (2003), "Load Plate Rigidity and Scale Effects on the Frictional Behavior of Sand/Geomembrane Interfaces", Geotextiles and Geomembranes, Vol.21, No.1, pp.25-47. https://doi.org/10.1016/S0266-1144(02)00034-1
  10. Ju, J. W., Lim, W. S., Lee, G. D., Park, J. B. and Kim, J. H. (2010), "Pullout Characteristics According to the Change of Reinforcement Length in Pullout Test", Korean Geosynthetics Society Fall Conference, pp.81-93.
  11. Kerisel, J. (1972), The Language of Models in Soil Mechanics, Cambridge University Press, pp.49.
  12. Kim, Y. T. and Kang, H. S. (2008), "Mechanical Properties of Waste Tire Powder-Added Lightweight Soil", Korean Society of Civil Engineers Vol.28, No.4C, pp.247-253.
  13. Korea Expressway Corporation (2000), A Guide for the Backfill Materials of Embedded Structures, Expressway Research Institute Research Report
  14. Kuk, K. K., Do, J. N., Ham, T. G. and Chun, B. S. (2009), "Compressibility Characteristics of Crashed Stone and Bottom Ash Mixture by One-Dimensional Compression Test", Korean Society of Civil Engineers Conference 2009, pp.877-880.
  15. Kwon, S. J. and Kim, Y. T. (2013), "Shear Properties of Bottom Ash-Crumb Rubber Mixture Reinforced with Waste Fishing Net Using Triaxial Test, Korean Geotechnical Society, Vol.29, No.9, pp.81-91. https://doi.org/10.7843/kgs.2013.29.9.81
  16. Liu, C. N., Ho, Y. H. and Huang, J. W. (2009), "Large Scale Direct Shear Tests of Soil/PET-yarn Geogrid Interfaces", Geotextiles and Geomembranes, Vol.27, No.1, pp.19-30. https://doi.org/10.1016/j.geotexmem.2008.03.002
  17. Moraci, N. and Cardile, G. (2009), "Influence of Cyclic Tensile Loading on Pullout Resistance of Geogrids Embedded in a Compacted Granular Soil", Geotextiles and Geomembranes, Vol.27, No.6, pp.475-487. https://doi.org/10.1016/j.geotexmem.2009.09.019
  18. Moraci, N. and Recalcati, P. (2006), "Factors Affecting the Pullout Behaviour of Extruded Geogrids Embedded in a Compacted Granular Soil", Geotextiles and Geomembranes, Vol.24, No.4, pp.220-242. https://doi.org/10.1016/j.geotexmem.2006.03.001
  19. Ochiai, H., Otani, J., Hayashi, S. and Hirai, T. (1996), "The Pull-Out Resistance of Geogrids in Reinforced Soil", Geotextiles and Geomembranes, Vol.14, No.1, pp.19-42. https://doi.org/10.1016/0266-1144(96)00027-1
  20. Sieira, A. C. C. F., Gerscovich, D. M. S. and Sayao, A. S. F. J. (2009), "Displacement and load transfer mechanisms of geogrids under pullout condition", Geotextiles and Geomembranes, Vol.27, No.4, pp.241-253. https://doi.org/10.1016/j.geotexmem.2008.11.012
  21. Sugimoto, M., Alagiyawanna, A. M. N. and Kadoguchid, K. (2001), "Influence of Rigid and Flexible Face on Geogrid Pullout Tests", Geotextiles and Geomembranes, Vol.19, No.5, pp.257-277. https://doi.org/10.1016/S0266-1144(01)00011-5
  22. Tuna, S. C. and Altun, S. (2012), "Mechanical Behaviour of Sand-Geotextile Interface", Scientia Iranica, Vol.19, No.4, pp.1044-1051. https://doi.org/10.1016/j.scient.2012.06.009

Cited by

  1. Bearing Characteristics of Waste Fishing Net - Reinforced Sand With Different Embedded Depths vol.29, pp.1, 2015, https://doi.org/10.5574/KSOE.2015.29.1.078