• Title/Summary/Keyword: 강성 감소

Search Result 1,012, Processing Time 0.027 seconds

Settlement Characteristics of the Reinforced Railroad Roadbed with Crushed Stones Under a Simulated Train Loading (모사 열차하중 재하에 따른 쇄석강화노반의 침하특성)

  • Hwang, Seon-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.5-13
    • /
    • 2004
  • Conventional railroad roadbeds constructed with soils can easily deteriorate with time due to the increase of repeated traffic loading, increase of train speed, built-up of ground water on the roadbed and decrease of permeability in the roadbed layer, etc. In this study, performance of reinforced railroad roadbeds with the crushed stones was investigated through the real scale roadbed tests and numerical analysis. It was found that the reinforced roadbed with crushed stone had less elastic and plastic vertical displacement(settlement) than general soil roadbed regardless of the number of loading cycles. It was also found through the actual testing that for the roadbed with the same thickness, the displacement of reinforced roadbed decreases with the increase of subgrade reaction modulus. The settlement of reinforced roadbed with the same subgrade reaction modulus also decreases with the increase of thickness of the reinforced roadbed. However, the subgrade reaction modulus is a more important factor to the total plastic displacement of the track than the thickness of the crushed stone roadbed.

Feasibility Study of MR Elastomer-based Base Isolation System (MR 엘라스토머를 이용한 기초격리 시스템에 대한 타당성 연구)

  • Jang, Dong-Doo;Usman, Muhammad;Sung, Seung-Hoon;Moon, Yeong-Jong;Jung, Hyung-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.597-605
    • /
    • 2008
  • The feasibility study of a newly proposed smart base isolation system employing magneto-rheological elastomers(MREs) has been carried out. MREs belong to a class of smart materials whose elastic modulus or stiffness can be adjusted by varying the magnitude of the magnetic field. The base isolation systems are considered as one of the most effective devices for vibration mitigation of civil engineering structures such as bridges and buildings in the event of earthquakes. The proposed base isolation system strives to enhance the performance of the conventional base isolation system by improving the robustness of the system wide stiffness range controllable of MREs, which improves the adaptability and helps in better vibration control. To validate the effectiveness of the MRE-based isolation system, an extensive numerical simulation study has been performed using both single-story and five-story building structures employing base isolated devices under several historical earthquake excitations. The results show that the proposed system outperformed the conventional system in reducing the responses of the structure in all the seismic excitations considered in the study.

The Corrosion Behavior of Rebar Embedded in Concrete With Chloride. (염화물 혼입에 따른 철근의 부식 거동)

  • Kim, Myung-Yu;Kim, Il-Sun;Jin, Sang-Ho;Yang, Eun-Ik;Lee, Sung-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1069-1072
    • /
    • 2008
  • As embedded reinforcing suffer from corrosion process, the bond strength and stiffness are reduced, and the structure proceed, eventually, to the deterioration of the concrete, shortening the service life of concrete structures rapidly. In order to deal with these problems, a multitude of researches have been carried out up to this date to evaluate the bond characteristics of RC members, i.e. by artificially inducing rapid corrosion of the reinforcing bar. These artificial corrosion methods, however, could not represent the real condition, resulting in the possibility of overestimation for the RC members in real situation. Accordingly, the purpose of this paper is to investigate the difference in the bond characteristics for RC members corroded by different corrosion methods (artificial rapid method, natural method). For the case of natural corrosion, the brittle failure was observedeven for the case of the area ofcorrosion of 50%. And, the bond strength decreased by about 10% or more for the caseofspecimens with the area of corrosion of 80% or above. Especially, the deterioration of concrete starts at the state of low corrosion level for the case of natural corrosion. Thus, the safety of RC members must be assessed and evaluated more carefully for the naturally corroded members than for the RC concrete members corroded rapidly by artificial method.

  • PDF

Structural Joint Damage Assessment Using Neural Networks (신경망을 이용한 구조물 접합부의 손상도 추정)

  • 방은영;이진학;윤정방
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.35-46
    • /
    • 1998
  • Structural damage is used to be modeled through reductions in the stiffness of structural elements for the purpose of damage estimation of structural system. In this study, the concept of joint damage is employed for more realistic damage assessment of a steel structure. The joint damage is estimated damage based on the mode shape informations using neural networks, The beam-to-column connection in a steel frame structure is represented by a rotational spring at the fixed end of a beam element. The severity of joint damage is defined as the reduction ratio of the connection stiffness with respect to the value of the intact joint. The concept of the substructural identification is used for the localized damage assessment in a large structure. The feasibility of the proposed method is examined using an example with simulated data. It has been found that the joint damages can be reasonably estimated for the case with the measurements of the mode vectors subjected to noise.

  • PDF

Study on Elevator Induced Structural Vibration Reduction Performance Using Polymer Concrete (폴리머 콘크리트를 이용한 엘리베이터 기인 구조 진동저감 성능 연구)

  • Yeom, Jihye;Kim, Jeong-Jin;Park, Junhong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.90-94
    • /
    • 2021
  • With the increased interest on quiescent place for residential place, the noise generation from facilities needs to be minimized. One important noise source include sounds from operation of elevators. The elevator operates between floors and generates significantly annoying sounds to the nearby living spaces. It is recognized as the significant contributor inducing noise annoyance to residents. Elevator is supported to the building structure at several locations for movements between floors. In this study, the vibration reduction by use of polymer concrete on the support location was demonstrated. By measuring and comparing the vibration generation when supported on cement and polymer concrete, the noise reduction performance was evaluated. The polymer concrete was made in the form of being inserted into the wall that imitates the hoistway. The impact vibration was induced to the bracket and vibration transfer magnitude was measured. The damping ratio was evaluated through normalization and curve fitting of transient response, and comparison was performed for each resin mixing ratio. By use of polymer concrete, it was possible to reduce the vibration generation in an effect manner without sacrifice on the structural rigidity.

Stiffness Enhancement of Piecewise Integrated Composite Beam using 3D Training Data Set (3차원 학습 데이터를 이용한 PIC 보의 강성 향상에 대한 연구)

  • Ji, Seungmin;Ham, Seok Woo;Choi, Jin Kyung;Cheon, Seong S.
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.394-399
    • /
    • 2021
  • Piecewise Integrated Composite (PIC) is a new concept to design composite structures of multiple stacking angles both for in-plane direction and through the thickness direction in order to improve stiffness and strength. In the present study, PIC beam was suggested based on 3D training data instead of 2D data, which did offer a limited behavior of beam characteristics, with enhancing the stiffness accompanied by reduced tip deformation. Generally training data were observed from the designated reference finite elements, and preliminary FE analysis was conducted with respect to regularly distributed reference elements. Also triaxiality values for each element were obtained in order to categorize the loading state, i.e. tensile, compressive or shear. The main FE analysis was conducted to predict the mechanical characteristics of the PIC beam.

Effect of the Cylindrical Baffle Configuration Behind Rigid Barrier on Impact Load of Debris Flow (중력식 사방댐 후면에 설치된 원통형 대책구조물의 배치조건이 토석류의 충격하중에 미치는 영향)

  • Kim, Beom-Jun;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.7-17
    • /
    • 2022
  • This study investigates the effect of cylindrical baffle arrays behind a rigid barrier on debris flow behavior and dynamic impact load. Small-scale tests were performed with various transverse blockage ratios and row numbers of baffles. High-speed cameras were installed at the flume's top and side, and load cells were installed in front of the rigid barrier. Moreover, glass beads simulated large boulders with debris flow in the flume. Test results revealed that the impact load of debris flow on the rigid barrier was significantly reduced using the cylindrical baffles behind the rigid barrier. In addition, the increased transverse blockage ratio of baffle arrays led to a greater impact load of debris flow because of flow suppression due to the baffle arrays.

The Effect of Shear Resistance in Rigid Soil-nailed Slope System (강성 쏘일네일 보강 사면의 전단저항 효과)

  • Kwon, Young-Ki;Jeong, Sang-Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.295-301
    • /
    • 2009
  • In general the stability of soil nail-slope system, the shear resistance is neglected because the tensile resistance of nail acts mainly for slope stabilization. This is because that deformed steel is generally used for nail and it does ductile behavior. In other side when the steel pipe with high rigidity is used for nail, the shear resistance at failure surface work more than deformed steel. In order to analyze effects of shear resistance at the soil nail-slope system with high steel piped nail, a series of numerical analyses were performed. Also numerical analyses at 3 conditions - 5 nailed, 7 nailed, 9 nailed at the same slope were perfomed for investigating the trend of shear resistance effect. From these 3D numerical analyses, it was found that the maximum shear resistances at each nails were larger in case of steel piped nail and because of this, the factor of safety at the condition of the steel piped nail appears larger than that of deformed steel nail.

Drift Design Method of Steel Moment Frames by using Column-Beam Strength Ratios and Unit-Load Method (기둥-보 휨강도비와 단위하중법을 이용한 철골모멘트골조의 강성설계기법)

  • Oh, Byung-Kwan;Park, Hyo-Seon;Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.563-569
    • /
    • 2016
  • This paper presents the resizing method of columns and beams that considers column-to-beam strength ratios to simultaneously control the initial stiffness and ductility of steel moment frames. The proposed method minimizes the top-floor displacement of a structure while satisfying the constraint conditions with respect to the total structural weight and column-to-beam strength ratios. The design variable considered in this method is the sectional area of structural members, and the sequential quadratic programming(SQP) technique is used to obtain optimal results from the problem formulation. The unit load method is applied to determine the displacement participation factor of each member for the top floor lateral displacement; based on this, the sectional area of each member undergoes a resizing process to minimize the top-floor lateral displacement. Resizing members by using the displacement participation factor of each member leads to increasing the initial stiffness of the structure. Additionally, the proposed method enables the ductility control of a structure by adjusting the column-to-beam strength ratio. The applicability of the proposed optimal drift design method is validated by applying it to the steel moment frame example. As a result, it is confirmed that the initial stiffness and ductility could be controlled by the proposed method without the repetitive structural analysis and the increment of structural weights.

Evaluation of Factors Influencing the Dynamic Characteristics of Low Hardness High Damping Rubber Bearings (저경도 고감쇠 고무받침의 동특성에 미치는 영향인자 평가)

  • Choi, Se-Woon;Lim, Hong-Joon;Cho, Hyun-Jin;Park, Kun-Nok;Oh, Ju;Jung, Hie-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.11-20
    • /
    • 2008
  • In this paper, the characteristics of low hardness high damping rubber bearings(HDRB) were studied through various prototype tests. The low hardness HDRB were tested to evaluate vertical stiffness, shear stiffness, equivalent damping ratio, various dependencies of shear properties, ultimate shear properties and other factors. The prototype test was performed according to the specifications of ISO 22762-1, and evaluated according to the specifications of ISO 22762-3. The results of the prototype test showed that shear strain and temperature were the factors that most greatly influenced shear stiffness, and that compressive stress was the factor that most greatly influenced the equivalent damping ratio. The frequency dependence test of shear properties showed that two general tendencies of frequency dependence could be observed. At frequencies over 0.1Hz, the changes in shear properties were small. However, at frequencies under 0.1Hz, the changes in shear properties rapidly decreased. The creep test and the ultimate shear test were also performed, and both of them satisfied the requirements of ISO 22762-3.