• Title/Summary/Keyword: 강성지지

Search Result 482, Processing Time 0.019 seconds

Seismic Performance of Bridges with the Modeling of Expansion Rocker Bearings (라커베어링 모델에 따른 교량의 지진거동)

  • Choi, Eunsoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.755-763
    • /
    • 2002
  • Multispan simply supported bridges and multispan continuous bridges take a large portion of bridges in Central and Southeastern United Sates. The superstructure of the bridges are supported by steel rocker bearings. In general, the rocker bearings are modeled with ideal rollers or Coulomb fricition in seismic analysis. However, the rocker bearings have rocking action on pintles after rolling some distance. This rocking action may have considerable effect on the seismic performance of bridges. This study compares the effect of expansion rocker bearings models on a multispan simply supported and a multispan continuous bridge. Since the ideal roller model produces larger responses than the rocking model, its use is undesirable. However, the fricition and hardening model does not have much difference from the responses of the rocking model. In addition, the use of the tow models is convenient in seismic analyses of bridges. Although the rocking model can obtain more exact responses, its behavior is complicated and it may induce the conversion problem in time history analysis because it includes the abrupt changing of stiffiness. The friction and hardening model of expansion rocker bearings is therefore recommended in sesismic analysis.

Numerical Study on Freezing and Thawing Process in Modular Road System (모듈러 도로시스템의 동결-융해에 대한 수치해석적 연구)

  • Shin, Hosung;Kim, Jinwook;Lee, Jangguen;Kim, Dong-Gyou
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.49-62
    • /
    • 2017
  • In order to understand response of geo-structures to the freezing-thawing process in the ground, it is necessary to consider phase change of the pore water of the ground and also to understand soil interaction with structures. In this study, numerical analysis was carried out for freezing and thawing effect on the modular road system. Neumann's theoretical equation for freezing-thawing processes in porous media can be used to estimate frozen depth and heaving from basic soil properties and ground and surface temperature, but its application is limited to the case for the sediment with fully saturated condition and zero unfrozen water content. Numerical analysis of the modular road system was performed on various soil types and different ground water table as the varying freezing index. The amount of heaving in the silty soil was much larger than those in granite weathered soil or sandy soil, and lowering groundwater level reduced ground heaving induced by freezing. Numerical analysis for temperature history of the ground surface predicted residual heaving near the surface by the freeze-thaw process in silty soil. It ought to reduce stiffness and bearing capacity of the ground so that it will impair stability and serviceability of new road system. However, the amount of residual heaving was insignificant for the road system installed in weathered soil granite and sandy soil. Since modular road system is a pavement structure mounted on the supporting substructure unlike the prevalent road pavement system, strict criteria should be applied for uniform and differential settlement of the pavement system.

Development of the Structural Condition Evaluation Technique for Asphalt Pavements Using Falling Weight Deflectometer Deflections (Falling Weight Deflectometer 처짐값을 이욤한 아스팔트 포장체의 구조적 상태 평가기법 개발)

  • Son, Jong-Chul;Rhee, Suk-Keun;An, Deok-Soon;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.115-124
    • /
    • 2006
  • The objectives of this paper are to develop the structural condition evaluation technique using Falling Weight Deflectometer deflections and propose the structural condition criteria for asphalt pavements. To figure out correlation between surface deflections and critical pavement responses, the synthetic database has been established using the finite element pavement structural analysis program. A regression approach was adopted to develop the pavement response model that can be used to compute the stresses and strains within pavement structure using the FWD deflections. Based on the pavement response model, the procedure for assessing the structural condition of pavement layers was proposed in this study. To validate the condition evaluation procedure for asphalt pavements, the FWD test, dynamic cone penetrometer test, and repeated triaxial compression test were conducted on 11 sections of national highway and 8 sections of local road. Test results indicate that the tensile strain at the bottom of AC layer and AC elastic modulus were good indicators for estimating the stiffness characteristics of AC layer. For subbase layer, the BDI value and compressive strain on top of the subbase layer were appropriate to predict the structural capacity of subbase layer. The BCI value and compressive strain on top of the subgrade were found to be good indicators for evaluating the structural condition of the subgrade. The evaluation criteria for structural condition in asphalt pavements was also proposed in this paper.

  • PDF

A Case Study on the Hybrid Reinforcement Retaining Wall System Reinforced by Soil Nail and Steel Strip (쏘일네일과 강재스트립으로 보강된 복합보강토옹벽 시스템의 사례연구)

  • Chun, Byung-Sik;Kim, Hong-Taek;Cho, Hyun-Soo;Do, Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.5-12
    • /
    • 2008
  • The reinforced earth wall, which is able to improve the strength of soil highly, is required in case of supporting high surcharge load such as high speed rail way, high embankment road, and massive reinforced earth wall in a mountainous area. And also, it is continuously required that the method is able to minimize the amount of excavated soil on account of environmental issue, boundary of land, etc., on excavation site. However, because the required length of reinforcement should be $60{\sim}80%$ of the height of reinforced earth wall for general reinforced earth wall, in fact the reinforced earth wall is hardly applied on the site of cut slope. In this paper we studied the design and construction cases of hybrid reinforcement retaining wall system combined with steel strips and soil nails, connecting the reinforced earth wall reinforcements to the slope stability reinforcements (soil nails) to ensure sufficient resistance by means of reducing the length of reinforcements of reinforced earth wall. And the feasibility of hybrid reinforcement retaining wall system, suggested by real data measured on site, is also discussed.

Flexural Strengthening of Reinforced Concrete Beams Using Carbon Fiber Mesh (탄소섬유 메쉬를 사용한 철근콘크리트 보의 휨보강)

  • Seo, Soo-Yeon;Yun, Hyun-Do;Choi, Chang-Sik;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.181-190
    • /
    • 2005
  • The objective of this work is to study the flexural strengthening effectiveness of Carbon Fiber Mesh (CFM) in reinforced concrete beams. Flexural strengthening for a simply supported reinforced concrete (RC) beam using CFM is developed by bonding CFM to the soffit of the beam. In this experimental program, five medium-sized reinforced concrete beams strengthened with CFM are tested in bending to evaluate reinforcing effects of the CFM. The beams are designed to have high shear capacity so that expected dominant failure mode of specimens is bending. The reinforcing effect of CFM is small at crack initiation, but is considerable in flexural rigidity of the beam after crack initiation. In comparing the behaviors of strengthened and virgin beams each other, it is shown that the strength of RC beams can be enhanced by attaching CFM. A fairly good agreement between the measured values and the calculated ones is obtained at both the cracking strength and yield strength of the strengthened beams.

A Study on FE Modeling Techniques of Steel Plate Girder Bridge with Composite Section for the Dynamic Analysis (동특성 분석을 위한 합성단면을 갖는 교량구조물의 FE 모델링 기법)

  • Heo, Gwang-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.139-148
    • /
    • 2006
  • The dynamic characteristics of a bridge deduced by using the modeling techniques depend on its stiffness and mass calculated from its geometric model. This research develops the FE modeling techniques for a steel plate girder bridge with composite section. and proves their validity by comparing the results with those from actual measurement. The FE modeling techniques are divided into two categories--a simplified one and two-dimensional model and a detailed three-dimensional model. In the meantime, the dynamic responses of the bridge tested for this research were measured by the ambient vibration some of accelerometers were been attached to its upper slab girder under normal traffic load. The Cross Power Spectrum obtained from the measurement was used to analyze the dynamic characteristics by natural excitation techniques. The analytic results are compared to those of each FE modeling, and thereby the modeling techniques were proved to be valid.

Pullout Characteristics of Waste Fishing Net Reinforced Bottom Ash using Pullout Test (인발시험에 의한 저회에 보강된 폐어망의 인발특성 연구)

  • Kwon, Soon-Jang;Kim, Yun-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.57-66
    • /
    • 2013
  • In this study, pullout tests were carried out to evaluate pullout characteristics of waste fishing net (WFN), which added into bottom ash for recycling both bottom ash and WFN. Three different mesh size of WFN (WFN20:$20mm{\times}20mm$, WFN30:$30mm{\times}30mm$, WFN40:$40mm{\times}40mm$) and geogrid were added as a reinforcement. Pullout characteristics of waste fishing net were compared with those of the geogrid. Pullout test results showed that pullout strength and stiffness of WFN20 are a little less than those of geogrid. However, the pullout friction angle of WFN20 is similar to that of geogrid due to bearing resistance induced from transverse rib because thickness of WFN20 is greater than geogrid. Pullout test results also indicated that distribution of residual strain along reinforcement after test depends on overburden stress. Residual strain at the tip of reinforcement increased with an increase in overburden stress due to concentration of pullout force on the tip of reinforcement.

Development of Permanent Deformation Prediction Model for Trackbed Foundation Materials based on Shear Strength Parameters (강화노반 쇄석재료의 전단강도특성을 고려한 영구변형예측모델 개발)

  • Lim, Yujin;Hwang, Jungkyu;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.623-630
    • /
    • 2012
  • Formation used as trackbed foundation for providing vertical bearing capacity onto rail foundation are composed of crushed stones usually with certain type of grain size distribution. Permanent deformation in trackbed foundation can be generated by increasing number of load repetition due to train traffic increases, causing track irregularity. In this study, a specially prepared trackbed foundation materials (M-40) used in Korea has been tested using a large repetitive triaxial compression apparatus in order to understand resilient and permanent deformation characteristics of the material. From these test results, resilient and permanent deformation characteristic are analyzed so that a permanent deformation model is developed which can consider number of load repetition N, confining stress (${\sigma}_3$), shear stress ratio(${\tau}/{\tau}_f$) and stiffness of the material.

Parametric Study on Displacement of Earth Retaining Wall by the Bermed Excavation Using Back Analysis (역해석을 통한 소단굴착에 따른 흙막이 벽체변위의 매개변수 연구)

  • Lee, Myoung-Han;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.23-33
    • /
    • 2015
  • Together with the wall stiffness, a berm has the role of deciding the stability of a temporary retaining wall before structure installation after excavation. Especially in case of loose or soft soil excavated ground, the role of berm is very important. In this study, the measurement data obtained from the temporary retaining wall in the bermed excavation site in urban and numerical analysis are used to investigate the effects of berm's dimension (width and slope), excavation depth and ground property on the maximum horizontal displacement of the temporary retaining wall. The measurement data indicated that the wall displacement varied to the berm's width. That is, as the berm width decreased, the wall displacement increased. As a result of numerical analyses, the maximum wall displacement increased as slope increased and berm width decreased. This means that the berm is effectively restrained to the wall displacement. As excavation depth increased, the effect of berm's slope and width increased. In case of the same berm condition, the wall displacement restrained as ground property increased.

Settlement Reduction Effect of the Geogrid Reinforced Stone Column System (고강도 지오그리드로 보강된 Stone Column 공법의 침하감소효과)

  • Park, Sis-Am;Cho, Sung-Han;Yoo, Chung-Sik;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • Sand Compaction Pile and Stone Column method have been used in widely during several decades as a technique to reinforce soft soils and increasing ultimate bearing capacity, accelerate consolidation settlement of the foundation ground. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, development the geogrid reinforced stone column system for settlement reduction and wide range of application of stone columns. To develop this system, triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate and confine pressure. Then, 3-dimensional numerical analysis were evaluated for application of the GRSC (geogrid reinforced stone column) system as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on types and reinforcing depth change of geogrid.

  • PDF