• Title/Summary/Keyword: 강성지지

Search Result 482, Processing Time 0.031 seconds

An Experimental Study on the Behavior of the T-type Steel Composite Beam (단순지지 T형 합성보의 휨거동에 관한 실험적 연구)

  • Kim, Sang Seup;Kim, Sang Mo;Kim, Sung Bae;Seo, Dong Gee;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.225-233
    • /
    • 2004
  • Composite action is generally achieved by providing shear connections between steel top flange and concrete topping. Composite sections have greater stiffness than the summation of the individual stiffness of slab and beam. Therefore, they can carry larger loads or similar loads with appreciably smaller deflection and are less prone to transient vibration. T-type Steel Composite beam (TSC-beam) was developed to increase these advantages. Ten specimens were tested for this study. During the experiment, crack pattern and deflection of beam were investigated. The examined results of TSC beam system were compared with results from the typical composite beam and RC beam.

The Effect of Sleeper Space and Support Stiffness in Concrete Track on Vibration of Structure (콘크리트궤도 침목간격과 궤도지지강성이 진동에 미치는 영향)

  • Sung, Deok-Yong;Kim, Sang-Jin;Yang, Tae-Kyoung;Jang, Ki-Sung;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.725-732
    • /
    • 2011
  • The vibration resulting from railway operation is transmitted through the tunnel to adjacent buildings and the transmitted vibration radiates structure-borne noise which is causing a lot of public complaints by its negative effects to the buildings near tunnel. This study performed the parametric study about sleeper space and track support stiffness in order to reduce vibration on the concrete track and near structures. In this study, it was compared and performed vibration analysis and field test about these. In addition, as changing the sleeper space and track support stiffness, vibration of the structures was evaluated. Via this study, in terms of reducing the figure of the sleeper space and track support stiffness to the half, as vibrating acceleration transmitted through concrete round is getting reduced, it transmitted through the tunnel was analysed to the same phenomena. In conclusion, suggested track structure into this study, it can be applied to the track structure of existing line, and it is expected to be a new effective anti-vibration method to prevent public complaints.

  • PDF

A Study on the Supportive Stiffness in Transitional Zones through Moving Load-Based Three-Dimensional Modeling (이동하중과 3차원 모델링을 통한 접속부 지지강성연구)

  • Woo, Hyeun-Joon;Lee, Seung-Ju;Kang, Yun-Suk;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1542-1549
    • /
    • 2011
  • The Transitional zone between bridge abutment and earthwork is one of the representative vulnerable zones in railway where differential settlements may take place due to the different supportive stiffness. Although transitional zones are managed with stricter standards than those of the other earthwork zones either in the design and construction stages, it is very difficult to prevent differential settlement perfectly. A three-dimensional numerical analyses were performed by applying train moving load in this study. The analytical model including abutments and earthwork zones was constituted with rail, sleepers, track concrete layer (TCL), hydraulic stabilized base (HSB), reinforced road bed, and road bed using railway and road base structure. The clamp connecting the rail and sleeper were also modeled as the element with spring coefficient. The train wheel is modeled in the actual size and moved on the rail with 300 km/hr speed. The deformation characteristics at each point of the rail and the ground were considered in detail when moving the train wheel. The analysis results were compared with those from the two-dimensional analysis without considering moving load. The research results show that displacement and stress were greater in the three-dimensional analysis than in other analyses, and the three-dimensional analysis with moving load should be performed to evaluate railway performance.

  • PDF

A Behaviour Analysis on Clayey Ground and Steel Sheet Piles Subjected to Unsymmetrical Surcharges (편재하중을 받는 점토지반과 강널말뚝의 거동해석)

  • Lee, Moon Soo;Lee, Byoung Koo;Jeong, Jin Seob;Kim, Chan Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.977-988
    • /
    • 1994
  • In this paper, the comparisons between field measurments and numerical results ware performed for the settlements, lateral displacement in Jinwol interchange works on the Honam express way whose site was improved by sand drain for the constructions of over bridges, piers and abutments. The computer program was developed by coupling Biot's equation with Sekiguchi's elasto-viscoplastic model under plane strain conditions. Steel pipe piles for piers were replaced into the equivalent steel sheet pile wall. The characteristics of behavior for both the soil foundations and the sheet piles wall were investigated with the variation of axial force on the wall, rigidity of the wall, supported condition of sheet pile into hard strata and the location of anchored point.

  • PDF

Apparatus and method for analysing spectral response of a CCD optical sensor using an infrared imaging technique (적외선 영상기법에 의한 CCD 센서의 스펙트럼 응답 특성 분석 기법)

  • Kang Seong-Jun;Na Cheol-Hun;Park Soon-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.25-30
    • /
    • 2006
  • An infrared imaging method is proposed in which direct measurement of the spectral response of CCD sensors can be achieved through digital image processing. This method allows for a simple and economic method to detect the spectral sensitivity of commercialized CCD sensors. The key components of the apparatus are a monochromator, CCD-sample supporter and a personal computer equipped with a digital image processing systems. Tentative experimentation conducted on the commercialized CCD camera has resulted in a fairly consistent agreement with the theoretical model.

Fuzziness for Buckling Loads of Columns with Uncertain Medums (불확실한 매체를 갖는 기둥 좌굴하중의 애매성)

  • 이병구;오상진
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.86-96
    • /
    • 1995
  • In this paper the fuzzy extension for the classical engineering mechanics problems is studied. The governing differential equation is derived for the buckling loads of the columns with uncertain mediums: the their own weight and the flexural rigidity. The columns with one typical end constraint(hinged1 clarnped/free) and the other finite rotational spring with fuzzy constant are considered in numerical examples. The vertex method is used to evaluate the fuzzy functions. The Runge-Kutta method and Determinant Search method are used to solve the differential equation and determine the buckling loads, respectively. The membership functions of the buckling load are calculated. The index of fuzziness to quantitatively describe the propagation of fuzziness is defined. According to the fuzziness of governing factors, the varlation of index of fuzziness for buckling load is investigated, and the sensitivity for the end constraints is analyzed.

  • PDF

The Geometrical Analysis of Vibration Modes and Frequency Responses of an Elastically Suspended Optical Disc Drive (탄성적으로 지지된 광디스크 드라이버의 진동모드와 주파수 응답의 기하적 해석)

  • Dan, Byeong-Ju;Choe, Yong-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.362-369
    • /
    • 2000
  • Via screw theory, a vibration mode can be geometrically interpreted as a pure rotation about the vibration center in a plane and as a twisting motion on a screw in a three dimensional space. In thi s paper, applying the conditions that can be used to diagonalize the stiffness matrix by a parallel axis congruence transformation, the vibration modes and frequency response of an elastically suspended optical disc drive have been analyzed. It is first shown that the system has one plane of symmetry, which enables one to decouple the complicated vibration modes into two sets of modes independent of each other. Having obtained the analytical solutions for the axes of vibrations, the frequency response for a given applied input force has been demonstrated. Most importantly, it has been explained that this research result could be used in the synthesis process of a linear vibration system in order to improve the frequency response.

Development Of Active Vibration Isolation System Using Fuzzy Method (퍼지 방법을 이용한 능동 방진 시스템의 개발)

  • Yang, Xun;An, Chae-Hun;Jin, Kyoung-Bog;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.731-736
    • /
    • 2007
  • Vibration isolation equipments are mostly required in precise measurement and manufacturing system. Among all the vibration isolation system, air-spring is the most widely used equipment because of low resonant frequency and high damping ratio. In this study, Takagi-Sugeno fuzzy method is used to design an active vibration isolation system using air-spring, and compared the fuzzy method with passive control method and PID control method. Due to the non-linearity characteristics of air-spring, fuzzy controller was verified to be the most effective both in simulation and experiment.

  • PDF

Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs (제형파형강판 복부판의 탄성 연성전단좌굴 거동)

  • Yi, Jong Won;Gill, Heung Bae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.707-715
    • /
    • 2005
  • Corrugated webs have been used for composite prestressed concrete box girder bridges. Innovative steel plate girders using corrugated webs have been proposed. It has been found that analytical and experimental researches conducted to determine the strength of trapezoidally corrugated webs can fail with respect to three different buckling modes: local, global, and interactive shear buckling. Shear buckling capacity equations based on classical and orthotropic plate buckling theories have been proposed,but these equations show some differences. In this paper, geometric parameters that influence interactive shear buckling behavior with interaction effects are identified via extensive bifurcation buckling analysis using the finite element meth.

Fuzzy Controller Design for Active Vibration Isolation System Using Air-spring (공기스프링을 이용한 능동 방진 시스템의 퍼지 제어기 설계)

  • Yang, Xun;An, Chae-Hun;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.185-190
    • /
    • 2007
  • In recent days, vibration isolation system is mostly required in precise measurement and manufacturing system to reduce vibration due to external disturbances and internal actuators. Among all the vibration isolation systems, air spring is widely used because of its low resonant frequency and high damping ratio. In this study, we first analyze the passive air-spring system using leveling valve, and then design the active vibration isolation system. Because the non-linearity of pneumatic characteristics, we try to design the fuzzy controller which is better than PID controller at complex and non-linear system, and then compare them both in experiment and simulation.

  • PDF