• Title/Summary/Keyword: 강성제어

Search Result 545, Processing Time 0.024 seconds

Quadratic Stabilization by $H^{\infty}$ Output Feedback Controllers with Adjustable Parameters (조정가능한 파라미터를 가지는 $H^{\infty}$출력궤환 제어기를 이용한 자승적 안정화)

  • 강성규;이갑래;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.101-104
    • /
    • 1997
  • In this paper, we deal with a quadratic stabilization by $H^{\infty}$ output feedback controllers with adjustable parameters. The designed controller contains a contractive time-varying gain which can be used to adjust the responses of the resulting closed-loop system. The free parameter expressed as time-varying gain is chosen so that a Lyapunov function of the closed-loop system descends as fast as possible. A numerical example is given to show the validity of proposed method..

  • PDF

압전 지능구조물의 원리와 소음제어에의 응용

  • 김재환
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.267-273
    • /
    • 1996
  • 이 글은 소음 진동분야에 종사하는 분들에게 압전형 지능구조물을 소개하면서 소음 분야의 응용예 및 활용 가능성 그리고 앞으로의 과제들을 알리고자 한다. 지능 구조물이란 감지기(sensor)와 가진기(actuator) 그리고 제어기(control logic)가 구조물에 합해져서 능동적인 기능을 갖고 있는 것으로서 주위 환경의 변화를 감지하여 이에 대처하는 거동을 하는 구조물이다. 예를 들어, 기계적인 지능구조물은 그 위치 나 속도 또는 구조물의 강성도나 감쇠 성질을 변화시키는 구조물이다. 따라서 이러한 적응력을 갖춘 구조물은 많은 공학 분야에 큰 영향을 주고 있으며 소음제어 분야에 있어서도 큰 기대가 된다.

  • PDF

부정사용 방지를 위한 명성 제어 전자지불시스템 동향 분석

  • 강성우;박해룡;심경아
    • Review of KIISC
    • /
    • v.13 no.4
    • /
    • pp.74-79
    • /
    • 2003
  • 본 논문에서는 1982년 D.Chaum에 의해서 개발된 은닉서명 기법을 이용한 전자화폐로부터 최근에 개발된 전자지불시스템의 기술 동향을 살펴본다. 개인의 프라이버시를 제공하기 위하여 지나친 익명성을 보장하면, 강탈, 돈세탁 등과 같은 부정적인 사용을 할 수 있으므로 신뢰기관을 연계시킴으로써, 부정 사용시 익명성을 제어할 수 있는 전자화폐시스템이 개발되었다. 또한, 이러한 신뢰기관의 익명성 제어를 위해 전자거래상에서 많은 간섭이 있다면, 직권남용을 통하여 잘못 사용될 수 있다는 점도 고려하여야 한다. 이러한 전자지불시스템에서 발생 가능한 문제점과 이를 개선하기 위한 전자지불시스템의 개발 동향을 살펴보기로 한다.

Sliding Mode Control Based on 3-Loop of a Pneumatic Motor (공압모터의 3-루프 기반 슬라이딩 모드 제어)

  • Kim, Geun-Mook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6446-6451
    • /
    • 2014
  • Pneumatic motors are quite attractive for many applications because of their competitive price, light-weight, easy assembly, safety in hazardous areas as well as other features, such as a good force/weight ratio and operation in exceptionally harsh environments. In contrast to these advantages, pneumatic motors have limited use in applications, particularly those requiring a fast and precise response. These undesirable characteristics are due to the high compressibility of air and from the nonlinearities in pneumatic systems. This paper presents the sliding mode controller based on 3-loop(SMCB3L), which increases the load stiffness to control the rotation angle of a pneumatic motor. The characteristics for the step responses and load disturbances of the proposed controller were compared with the conventional PID controller. The experimental results showed that a properly designed SMCB3L is capable of high positioning accuracy within ${\pm}0.05mm$. Furthermore, the load stiffness of the SMCB3L can be improved 3.5 fold compared to that of PID controllers.

Movable Anchorage System for Mitigation of Cable Vibration in Cable-Stayed Bridges with Sag (Sag가 고려된 사장교 케이블의 진동저감을 위한 Movable Anchorage 시스템)

  • Hwang, Inho;Park, Jun Hyung;Lee, Jong Seh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.657-664
    • /
    • 2008
  • Rain-wind induced cable vibration can cause the damages in the cable-stayed bridge due to very little inherent damping characteristics and low fundamental frequency. External Dampers attached to stay cables near anchorages have been shown to be effective means at short stay-cables. However, installation locations of external dampers are limited to a particular range due to aesthetic and practical reasons for very long stay-cables. A recent study by the authors showed that the stay-cable vibration system can perform better than the optimal passive viscous damper, thereby demonstrating its applicability in large cable-stayed bridges. This paper extends the previous study on the taut string representation of the cable by adding cable sag and inclination. The response of the proposed system compared to those of the cable with and without an external damper, and the movable anchorage system provides very effective mitigation of cable vibration. Cable damping ratio is seen to be remarkably reduced by movable anchorage system for a wide range of cable sag. This result shows that the sag effects of the proposed system should be considered.

5자유도 순응기구

  • 정경한;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.90-90
    • /
    • 2003
  • PDF

Hybrid Control System Using On-Off Type LQG Algorithm (On-Off 형태의 LQG 알고리즘을 이용한 복합제어 시스템)

  • Jung Hyung-Jo;Yoon Woo-Hyun;Lee In-Won;Park Kyu-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.227-243
    • /
    • 2005
  • This paper presents a hybrid control system combining lead rubber bearings and hydraulic actuators for seismic response control of a cable stayed bridge. Because multiple control devices are operating, a hybrid control system could improve the control performances. However, the overall system robustness may be impacted negatively by additional active control devices. Therefore, a secondary on-off type controller according to the responses of lead rubber bearings is combined with LQG algorithm to improve the controller robustness. Numerical simulation results show that control performances of the hybrid system controlled by an on off type LQG algorithm are improved compared to those of the passive and active control systems and are similar to those of performance oriented hybrid system controlled by a LQG algorithm with the similar peak and normed control forces. Furthermore, it is verified that the hybrid system with an on-off type LQG controller is more robust for stiffness matrix perturbation than conventional hybrid control of system, and there are no signs of instability in the overall system. The proposed control system also maintains the control performance under not only the design earthquakes but also the other earthquakes. Therefore, the hybrid control system using on-off type LQG algorithm could be proposed as an improved control strategy for seismically excited cable-stayed bridges containing many uncertainties.

Design, Fabrication and Characterization of Lateral PZT actuator using Stiffness Control (강성제어 구조물을 이용한 수평구동형 박막 PZT 엑츄에이터의 설계, 제작 및 특성평가)

  • 서영호;최두선;이준형;이택민;제태진;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.756-759
    • /
    • 2004
  • We present a piezoelectric actuator using stiffness control and stroke amplification mechanism in order to make large lateral displacement. In this work, we suggest stiffness control approach that generates lateral displacement by increasing the vertical stiffness and reducing the lateral stiffness using additional structure. In addition, an additional structure of a serpentine spring amplifies the lateral displacement like leverage structure. The suggested lateral PZT actuator (bellows actuator) consists of serpentine spring and PZT/electrode layer which is located at the edge of the serpentine spring. The edge of the serpentine spring prevents the vertical motion of PZT layer, while the other edge of the serpentine spring makes stroke amplification like leverage structure. We have determined dimensions of the bellows actuator using ANSYS simulation. Length, width and thickness of PZT layer are 135$\mu$m, 20$\mu$m and 0.4$\mu$m, respectively. Dimensions of the silicon serpentine spring are thickness of 25$\mu$m, length of 300$\mu$m, and width of 5$\mu$m. The bellows actuator has been fabricated by SOI wafer with 25$\mu$m-top silicon and 1$\mu$m-buried oxide layer. The bellows actuator shows the maximum 3.93$\pm$0.2$\mu$m lateral displacement at 16V with 1Hz sinusoidal voltage input. In the frequency response test, the fabricated bellows actuator showed consistent displacement from 1Hz to 1kHz at 10V. From experimental study, we found the bellows actuator using thin film PZT and silicon serpentine spring generated mainly laterally displacement not vertical displacement at 16V, and serpentine spring played role of stroke amplification.

  • PDF

Crack Width Control and Flexural Behavior of Continuous Composite Beams (연속합성보의 균열폭 제어와 휨거동 평가)

  • Shim, Chang Su;Kim, Hyun Ho;Yun, Kwang Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.195-206
    • /
    • 2005
  • Experimental research was performed on the 6m-6m two-span, continuous composite beams. Background research for the crack width control of continuous composite bridges in the Eurocode-4 is reviewed and equationsfor the calculation of crack width considering tension stiffening are presented. The behavior of the continuous composite beams was investigated using the initial and stabilized cracking process of the concrete slab in tension. Test results showed that the current requirement of minimum reinforcement for ductility in Korea Highway Bridge Design Codes could be reduced. The flexural stiffness of cracked continuous composite beams can be evaluated by the uncracked section analysis until the stabilized cracking stage. An empirical equation for the relationship between the stress of tensile reinforcements and crack width was obtained from the test results.