• Title/Summary/Keyword: 강성법

Search Result 1,232, Processing Time 0.035 seconds

Secant Stiffness Analysis Method for Earthquake Design of Reinforced Concrete Structures (철근콘크리트 구조물의 내진설계를 위한 할선강성해석법)

  • Park, Hong-Gun;Kim, Chang-Soo;Eom, Tae-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.985-988
    • /
    • 2008
  • A linear analysis method using reduced secant stiffness was developed for inelastic earthquake design of reinforced concrete structures. In the proposed method, the beam-column element and plane element, which are the same as used in conventional elastic analysis, are used for structural modeling. Based on the structural plastic mechanism intended by engineer, the distribution of inelastic members is determined. The secant stiffness of the inelastic members is determined based on the target ductility of the structure. Inelastic strengths of the members are calculated by using linear analysis on the structure modeled with secant stiffness. Plastic rotations in the inelastic members are calculated with the nodal rotations resulting from the secant stiffness analysis. For verification, the proposed method was applied to the inelastic earthquake designs of a moment-resisting frame and a dual system of two dimensions, and also a dual system of three dimensions.

  • PDF

Model Tests for The Behavior of Propped Retaining Walls in Sand (굴착모형실험을 통한 토류벽체 및 지반거동에 관한 연구)

  • 이봉열;김학문
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.259-279
    • /
    • 1999
  • Model tests on propped retaining walls were performed for the investigation of wall displacement, distribution of earth pressure, surface settlement and underground movement at various excavation stage in sand. The result of model tests on the trough of surface settlement showed considerable difference depending on the characteristic of wall stiffness, wall friction and soil condition. The location of maximum underground movement were found to be at range of 0.15H to 0. 1H(H: Final excavation depth). Effect of arching by the redistribution of earth pressure were closely related to the stiffness of wall as well as the soil condition. The wall displacement and earth pressure distribution were simulated by elasto - plastic beam analysis program and finite element method with GDHM model respectively. The result of elasto-plastic analysis showed some discrepancy on the wall displacement and earth pressure, but result of underground movement by FEM with various wall stiffness were in good agreement with the model tests.

  • PDF

너비감소 판형 홀다운스프링 집합체의 탄성강성도 특성해석 및 평가방법 보정

  • 송기남;강흥석;윤경호;서정민;이진석
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.169-174
    • /
    • 1998
  • 두께는 일정하나 너비가 균일하게 변하는 판스프링들로 구성된 너비감소 판형 홀다운 스프링 집합체에 대한 탄성강성도 특성해석을 수행하였다. 국산 경수로 핵연료의 홀다운스프링 집합체와 동일한 설계공간내에 있도록 고안한 여러 종류의 너비감소 판형 홀다운 스프링 집합체 시편에 대한 탄성강성도를 해석적으로 평가하였고 특성시험을 수행하였다 또한 실제 시험 결과들을 잘 예측할 수 있도록 Euler 보 이론과 변형률 에너지법에 근거한 탄성강성도 평가방법을 보정하였다.

  • PDF

Damage Assessment and Aseismic Capacity Evaluation of Existing Structures (기설구조물의 손상도 및 내진능력 평가방법)

  • 윤정방;송종걸;김유진
    • Computational Structural Engineering
    • /
    • v.11 no.3
    • /
    • pp.199-212
    • /
    • 1998
  • 본 연구에서는 기설구조물에 대한 손상도 추정기법과 내진능력평가 방법에 대하여 연구하였다. 구조물의 손상도를 추정하는 방법으로는 소수의 계측 데이터를 이용한 모드섭동법(inverse modal perturbation)을 이용하였다. 구조물의 손상은 강성행렬의 감소로 표현하여, 각 요소행렬에 대한 손상을 손상지수를 사용하여 나타내었다. 구조적 손상과 이에 기인한 고유진동 특성의 변화량과의 관계를 섭동방정식으로부터 구한 후, 이로부터 손상지수와 고유진동 특성의 변화량과의 관계를 유동하였다. 따라서 손상 전과 후에서 구조물의 고유진동수와 모드형상을 측정하여 섭동식의 해를 구함으로써 구조물의 강성행렬의 감소로 나타나는 구조물의 손상도를 추정하게 된다. 손상도 추정에 의해 평가된 강성의 변화량에 기인한 손상 후의 기설구조물의 지진응답, 내진능력과 지진손상도의 평가를 손상전과 비교하였다. 내진능력은 구조부재에서 회전연성도 능력의 경험식을 이용하여 평가하였고, 지진손상도의 평가는 가장 많이 사용되는 방법인 Park & Ang 방법을 사용하였다. 예제해석은 다른 지진하중을 받는 2층과 8층의 예제구조물에 대해서 수행하였다.

  • PDF

A Study on Calculation of Cross-Section Properties for Composite Rotor Blades Using Finite Element Method (유한요소법 기반의 복합재료 블레이드 단면 특성치 계산에 관한 연구)

  • Park, Il-Ju;Jung, Sung-Nam;Cho, Jin-Yeon;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.442-449
    • /
    • 2009
  • A two-dimensional cross-section analysis program based on the finite element method has been developed for composite blades with solid, thin-walled and compound cross-sections. The weighted-modulus method is introduced to determine the laminated composite material properties. The shear center and the torsion constant for any given section are calculated according to the Trefftz' definition and the St. Venant torsion theory, respectively. The singular value problem of cross-section stiffness properties faced during the section analysis has been solved by performing an eigenvalue analysis to remove the rigid body mode. Numerical results showing the accuracy of the program obtained for stiffness, offset and inertia properties are compared in this analysis. The current analysis results are validated with those obtained by commercial software and published data available in the literature and a good correlation has generally been achieved through a series of validation study.

The Properties of a Nonlinear Direct Spectrum Method for Estimating the Seismic Performance (내진성능평가를 위한 비선형 직접스펙트럼법의 특성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.65-73
    • /
    • 2002
  • It has been recognized that the damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear time history analyses, monotonic static nonlinear analyses, or equivalent static analyses with simulated nonlinear influences. Some building codes propose the capacity spectrum method based on the nonlinear static analysis(pushover analysis) to determine the earthquake-induced demand given by the structure pushover curve. These procedures are conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for MDF(multi degree of freedom) systems. The purpose of this paper is to investigate the accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters. The conclusions of this study are as follows; 1) NDSM is considered as practical method because the peak deformations of nonlinear system of MDF by NDSM are almost equal to the results of nonlinear time history analysis(NTHA) for various ground motions. 2) When the results of NDSM are compared with those of NTHA. mean of errors is the smallest in case of post-yielding stiffness factor 0.1, static force by MAD(modal adaptive distribution) and unloading stiffness degradation factor 0.2~0.3.

An Analysis of Continuous Beam by Material Non-linear Transfer Matrix Method (재료비선형 전달행렬법에 의한 연속보의 해석)

  • Seo, Hyun Su;Kim, Jin Sup;Kwon, Min Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.77-84
    • /
    • 2011
  • This study is to develop nonlinear analysis algorithm for transfer matrix method, which can be applied to continuous beam analysis. Gauss-Lobatto integral rule is adopted and the transfer matrix is derived from stiffness matrix. In the transfer matrix method, the system equation has a constant number of unknowns regardless of number of D.O.F. Therefore, the transfer matrix method has computational efficiencies not only in linear elastic analysis but also in nonlinear analysis. To verify the developed method, the analysis results of several examples are compared with commercial code in moment-curvature, moment-displacement and load-displacement relation.