• Title/Summary/Keyword: 강섬유 계수

Search Result 112, Processing Time 0.024 seconds

A Study on the Change of Strength of FRP Member Immersed in Chemical Solution (화학약품용액에 침지한 FRP 부재의 강도 변화에 대한 연구)

  • Kim, Ho-Sun;Kim, Woo-Jong;Jang, Hwa-Sup;Kwak, Kae-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.117-123
    • /
    • 2010
  • If FRP materials that have been known as high durability materials are exposed to harmful environmental factors, deterioration and characteristics of materials can be reduced due to chemical reaction such as hydrolysis. Therefore, to use FRP materials as building major materials, it is important to exactly grasp dynamic properties by use condition. Accordingly, this study stored FRP materials in a strong acid and alkali compound solution for a certain period to conduct simulation for acute or chronic, extreme changes by chemicals, and conducted a test for compressive, tensile, shear and bending strength to analyze changes in strength by kinds and storage days of chemicals. In conclusion, the study findings indicate excellent chemical resistance of FRP materials.

A Study on the Development and Performance Evaluation of Permeable GFRP Strengthening Panel for RC Structure (투수성 GFRP 보강 복합체 개발 및 투수성에 대한 연구)

  • Jo, Byung Wan;Kang, Seok Won;Park, Cheol;Kim, Jang Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.65-73
    • /
    • 2013
  • Recently the exterior attaching reinforcement method is being often used by using FRP (Fiber Reinforced Polymer) as a method of strengthening concrete structure. this FRP exterior attaching reinforcement method has several advantages like high intensity, stiffness, good durability and easy installment comparing to its weight. but its structure is airtight covered by reinforcement material whose water permeability is low and water can't be discharged, thus it may provoke a damage to the structure after a long while. the main purposes of this study are to develop GFRP reinforcement material which can discharge the surface water properly and to measure its special functions. for this, we have changed the normal reinforcement material to water permeable structure and measured its water permeance modulus by an indoor test which shows the process of water permeance with the parameter of contained GFRP quantity. also tried to verify the measured value of the water permeance modulus in theory by analyzing the numbers on water permeance process. the test result showed that the biggest quantity of water, 0.5129 g/h $m^2$ was discharged when the fiber contained quantity reached at 75% and the tensile strength was also biggest by 476.6MPa at 75%, so it appeared that COSREM GP panel with 75% fiber contained quantity is the best in ventilation and structure.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (I) Evaluation of Setting and Shrinkage Characteristics and Tensile Behavior (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (I) 응결 및 수축 특성과 인장거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.307-315
    • /
    • 2012
  • Recently, ultra high performance fiber reinforced concrete (UHPFRC) having over 180 MPa compressive strength and 10 MPa tensile strength has been developed in Korea. However, UHPFRC represents different material properties with normal concrete (NC) and conventional high performance concrete (HPC) such as a high early age autogenous shrinkage and a rapid dry on the surface, because it has a low water-binder ratio and high fineness admixtures without coarse aggregate. In this study, therefore, to propose suitable experimental methods and regulations, and to evaluate mechanical properties at a very early age for UHPFRC, setting, shrinkage and tensile tests were performed. From the setting test results, paraffin oil was an appropriate material to prevent drying effect on the surface, because if paraffin oil is applied on the surface, it can efficiently prevent the drying effect and does not disturb or catalyze the hydration of cement. From the ring-test results, it was defined that the shrinkage stress is generated at the time when the graph tendency of temperature and strain of inner steel ring is changed. By comparing with setting test result, the shrinkage stress was firstly occurred as the penetration resistance of 1.5 MPa was obtained, and it was about 0.6 and 2.1 hour faster than those of initial and final sets. So, the starting time of autogenous shrinkage measurement (time-zero) of UHPFRC was determined when the penetration resistance of 1.5 MPa was obtained. Finally, the tensile strength and elastic modulus of UHPFRC were measured from near initial setting time by using a very early age tensile test apparatus, and the prediction models for tensile strength and elastic modulus were proposed.

Strength Development of Fiber Reinforced Lean Concrete Using Fly Ash and Reject Ash under Different Compaction Methods including Small Scale Roller Vibrator (플라이애쉬와 리젝트애쉬를 활용한 섬유보강 빈배합 콘크리트의 강도 특성 및 롤러다짐을 활용한 현장적용 실험)

  • Kim, Seung-Won;Jang, Young-Jae;Park, Young-Hwan;Park, Cheol-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.543-551
    • /
    • 2012
  • Road pavements in Korea generally show shorter service life than the predicted one. There are many reasons for this phenomenon including increased traffic load and other attacks from exposure conditions. In order to extend a service life and upgrade the pavement, a new multi-functional composite pavement system is being developed in Korea. This study is to investigate the performances of fiber-reinforced lean concrete for pavement base. This study considered mineral admixtures of fly ash and reject ash. The reject ash is defined as ash that does not meet the specifications for fly ash so that it cannot be used as a supplemental material for cement replacement. Due to the inherent property of lean concrete, compaction during the fabrication of specimens is a key factor. Therefore, this study suggests an appropriate compaction method. From the test results, the compressive strengths of the concrete satisfied the required limit of 5 MPa at 7 days. When a compaction roller was used to mimic actual field conditions, the strength development seemed to be influenced by the compaction energy rather than hydration of cement itself.

Bond and Flexural Behavior of RC Beams Strengthened Using Ductile PET (고연성 PET 섬유로 보강된 철근콘크리트 보의 부착 및 휨 거동)

  • Park, Hye-Sun;Kim, So-Young;Lim, Myung-Kwan;Choi, Donguk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.30-39
    • /
    • 2016
  • An experimental study was performed to investigate flexural performance and bond characteristics of RC beams strengthened using ductile polyethylene terephthalate(PET) with low elastic modulus. Bond tests were planned and completed following CSA S806. Test variables were fiber type and fiber amount. Also, total of 8 RC beams was tested. Major test variables of the beam tests included section ductility(${\mu}=3.4$, 7.0), fiber type(CF, GF, PET) and amount of fiber strengthening. Moment-curvature analyses of the beam sections were also performed. In bond tests, the bond stress distribution as well as the maximum bond stress increased with increasing amount of PET. In case of 10 layers of PET, the effective bond length was 60 mm with the maximum and the average bond stress of 2.33 and 2.10 MPa, respectively. RC beam test results revealed that the moment capacity of the RC beams strengthened using PET 10 and 20 layers increased over the control beam with little reduction in ductility by fiber strengthening. All beams strengthened using PET resulted in ductile flexural failure without any sign of fiber debonding or fiber rupture. It was important to include the mechanical properties of adhesive in the moment-curvature analysis of PET-strengthened beam sections.

Bending Strength Performance Evaluation of Glass Fiber Cloth Reinforced Cylindrical Laminated Veneer Lumber (직물형 유리섬유로 보강된 원통형 단판적층재의 휨 강도 성능 평가)

  • Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.415-423
    • /
    • 2016
  • Cylindrical laminated veneer lumber (LVL) is produced by winding the veneer tape on a circular cylinder. The veneer tape was produced by cutting the veneer into a rectangular shape and sewing it in a vertical direction to the fiber. The tensile strength test was carried out by producing the veneer tape specimen with different species of veneer, types and combinations of sewing yarn. The Radiata pine veneer tape produced with three sewing lines using the reinforced sewing thread had the best tensile strength. Also, the separation and snapping problems of the veneer tape were improved, resulting in the improvement in the workability of cylindrical LVL. The bending strength of various cylindrical LVL produced with different types of veneer tape and a different number of lamination layers and the application of reinforcement with glass fiber cloth was compared with that of Larix log. Bending MOR of cylindrical LVL reinforced with glass fiber cloth at the volume ratio of 11% was improved by 65% in comparison to the non-reinforced cylindrical LVL. In the case of the cylindrical LVL produced with 2 sewing lines of veneer tape, a fracture occurred at the butt joint between the veneer tapes. However, in the case of the cylindrical LVL produced with 3 sewing lines of veneer tape a fracture occurred in the fiber direction.

A Study on the Mechanical Properties of Steel Fiber Reinforced Porous Concrete for Pavement Using Slag Aggregate and Fly Ash (슬래그골재와 플라이애시를 이용한 강섬유 보강 포장용 투수콘크리트의 역학적 특성에 관한 실험적 연구)

  • Park, Seung-Bum;Lee, Jun;Jang, Young-Il;Lee, Byung-Jae
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.93-104
    • /
    • 2007
  • This study evaluates the mechanical properties of steel fiber reinforced porous concrete for pavement according to content of slag aggregate and fly ash to elicit the presentation of data and the way to enhance its function for the practical field application of porous concrete as a material of pavement. As a result, void ratio and permeability coefficient of porous concrete for pavement increased a little as mixing rate of slag aggregates increased. Void ratio and permeability coefficient increased a lot as mixing rate of fly ash decreased. As fly ash was mixed, national regulation of permeable concrete for pavement(8% and 0.1 cm/sec) was met. Compressive strength and flexural strength decreased as mixing rate of slag aggregates increased, but they increased a lot as mixing rate of fly ash increased. Even when slag aggregates were mixed 50% with 5% fly ash mixed, national regulation of pavement concrete(18MPa and 4.5MPa) was met. In addition, compared to non-mixture, flexural strength increased about 22.8% when 0.75vol.% of steel fiber was added. Regarding sliding resistance, BPN increased as mixing rate of slag aggregates increased. But BPN decreased as fly ash was mixed. Compared to crushed stone aggregates, abrasion resistance and fleers-thaw resistance decreased as mixing rate of slag aggregates increased. When fly ash was mixed, abrasion resistance and freeze-thaw resistance improved remarkably. Compared to non-mixture, 10% mixture of fly ash improved abrasion resistance and freeze-thaw resistance about 5.6% and 14.3 respectively.

  • PDF

Study on the Performance Evaluation of CS-H Wall composed of Steel Fiber (강섬유를 이용한 CS-H 벽체의 성능 평가에 관한 연구)

  • YU, Nam-Jae;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 2017
  • In this study, CS-H walls with large stiffness were constructed using geosythetics for use in excavation at a depth of 30 m or more in Korea, and in order to construct the CS-H wall suitable for the site conditions, the formulation was examined according to the change in the mixing ratio of the geosythetics and the slump value (slump flow) and as a result, in the target slump 180 mm and the slump flow 500 mm, the formulation was confirmed to meet the mechanical properties such as the initial bending strength, the long-term behavior, and the elastic modulus as well as the economic efficiency. However, in the slump flow 600 mm, the result indicated that the formulation was inappropriate in the mechanical properties such as the initial bending strength, the long-term behavior, and the elastic modulus.

Experimental Study on the Strength Improvement and the Long Term Durability of Shotcrete mixed Micro-Silica Fume (실리카 흄을 혼입한 숏크리트의 강도증진과 장기내구특성에 관한 실험적 연구)

  • Ma, Sang-Joon;Kim, Dong-Min;Jang, Phil-Sung;Choi, Jae-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.165-182
    • /
    • 2006
  • In this study, field test was performed to investigate the strength-improvement effect of shotcrete mixed Micro-silica fume and shotcrete quality was estimated by EFNARC standard. Deterioration test combined the Freezing-thawing and Carbonation was also performed in order to investigate a long-term durability of high-strength shotcrete. As a result of test, the compressive strength of shotcrete using Micro-silica fume was 45.2~55.8MPa and flexible strength was 5.01~6.66MPa, so a promotion ratio of strength was 37~79%, 17~61% respectively. And the strength-improvement effect of strength by silica fume addition ratio of 7.5~10% for cement mass was more superior to the others. Due to relative dynamic modulus, mass decrease rate and carbonation progress of shotcrete mixed Micro-silica fume, it was especially realized that Micro-silica fume reduced deterioration caused by steel fiber and improved a long-term durability of shotcrete.

  • PDF

Studies on Strength of Netting (1) The Decrease in Strength of Netting Twines by Knotting (그물감의 강도에 관한 연구 (1) 그물실의 강도가 매듭에서 감소하는 기구)

  • KIM Dai An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 1976
  • 1) The decrease in strength of netting twines at the knot may be regarded to be due mainly to the frictional force acting on the tip of the knot. The knot strength T may be given by $$T=\frac{T_0}{1+{\mu}\frac{s}{\rho}\varrho^{\mu\theta}$$ were $T_0$ is the tensile strength of unknotted netting twines, $\mu$ the coefficient of friction beween two netting twines forming a knot, s the contact length between the tip and the netting twine compressing it, $\rho$ the radius of curvature of the compressing, and $\theta$ the angle at which the compressing rubs with another one in the vicinity of the opposite tip. 2) Knots are arranged in order of strength as follows : the reef knot pulled lengthwise $\risingdotseq$ the trawler knot pulled breadtwise the reef knot pulled breadthwise.

  • PDF