• Title/Summary/Keyword: 강섬유보강콘크리트

Search Result 391, Processing Time 0.02 seconds

Slump and Mechanical Properties of Hybrid Steel-PVA Fiber Reinforced Concrete (강섬유와 PVA 섬유로 하이브리드 보강된 콘크리트의 슬럼프 및 역학적 특성)

  • Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.651-658
    • /
    • 2010
  • Sixteen concrete mixes reinforced with hybrid steel-polybinyl alcohol (PVA) fibers and a control concrete mix with no fiber were tested in order to examine the effect of the micro and macro fibers on the slump and different mechanical properties of concrete. Main variables investigated were length and volume fraction of steel and PVA fibers. The measured mechanical properties of hybrid fiber reinforced concrete were analyzed using the fiber reinforcing index and compared with those recorded from monolithic steel or PVA fiber reinforced concrete. The initial slump of hybrid fiber reinforced concrete decreased with the increase of the aspect ratio and the volume fraction of fibers. In addition, splitting tensile strength, modui of rupture and elasticity, and flexural toughness index of concrete increased with the increase of the fiber reinforcement index. Modulus of rupture and flexural toughness index of hybrid fiber reinforced concrete were higher than those of monolithic fiber reinforced concrete, though the total volume fraction of hybrid fibers was lower than that of monolithic fiber. For enhancing the flexural toughness index of hybrid fiber reinforced concrete, using the steel fiber of 60 mm length was more effective than using the steel fibers combined with 60 mm and 30 mm lengths.

Compressive Behavior of Hybrid Steel Fiber Reinforced Ultra-High Performance Concrete (하이브리드 강섬유 보강 초고성능 콘크리트의 압축거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.213-221
    • /
    • 2016
  • Uniaxial compression tests for ultra-high performance hybrid steel fiber reinforced concrete (UHPC) were performed to evaluate the compressive behavior of UHPC. The UHPC for testing contains hybrid steel fibers with a predetermined ratio using a length of 19 mm and 16 mm straight typed steel fibers. Test parameter was determined as a fiber volume ratio to investigate the effect of fiber volume ratio on the strength and secant modulus of elasticity. Test results showed that the compressive strength and elastic modulus of UHPC increased with increasing the fiber volume ratio. Based on the test results, the compressive strength and modulus of elasticity equations were proposed as function of the compressive strength of unreinforced and fiber reinforced UHPC, respectively. The simplified equations for predicting the mechanical properties of the UHPC were a good agreement with the test data. The proposed equations are expected to be applied to the SFRC and UHPC with steel fibers.

Flexural Performance Characteristics of Amorphous Steel Fiber-Reinforced Concrete (비정질 강섬유보강콘크리트의 휨성능 특성)

  • Ku, Dong-Oh;Kim, Seon-Du;Kim, Hee-Seung;Choi, Kyoung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.483-489
    • /
    • 2014
  • In this study, the flexural test of amorphous steel fiber-reinforced concrete was performed according to ASTM C 1609 to investigate its flexural performances. The amorphous steel fibers have different configurations from conventional steel fibers : thinner sections and coarser surfaces. Primary test parameters are fiber type (amorphous and conventional steel fibers), concrete compressive strength (27 and 50 MPa), and fiber volume fraction (0.25, 0.50, and 0.75%). Based on the test results, flexural strength and flexural toughness of the amorphous and conventional steel fiber-reinforced concrete were investigated. The results showed that the addition of the amorphous steel fibers into concrete could enhance both flexural strength and toughness while the addition of the conventional steel fibers into concrete was mainly effective to increase the flexural toughness.

An Experimental Study on the Fracture Energy of Steel Fiber Reinforced Concrete Structures by the Effects of Fiber Contents (강섬유 혼입량에 의한 강섬유보강콘크리트의 파괴에너지에 관한 실험적 연구)

  • 장동일;채원규;정원우;손영환
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.79-88
    • /
    • 1991
  • In this study, fracture tests were carried out in order to investigate the fracture behavior of SFRC(Steel Fiber Peinforced Concrete) with initial cracks. The relationships between loading. strain, mld-span deflections and CMOD(Crack Mouth Opening Displacement) of the beams were observed under the three point loading system. The effect of the fiber content and the initial crack ratio on the concrete fracture behavior were studied and the fracture toughness, the critical energy release ratio and the fracture energy were also calcul ated from the test results. From the test results, it was known that when the fiber contents are between 0.5% and 1.0%, and 1.5% the average fracture energy of SFRC specimens is about 7~10 times. and about 15 times better than that of the plam concrete specimens respectively.ively.

Flexural Fatigue Bechavior of Steel Fiber Reinforced Concrete Structures (강섬유보강 콘크리트의 휨 피로거동에 관한 연구)

  • 장동일;채원규;손영현
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.81-87
    • /
    • 1992
  • In this thesis, the fatigue tests were performed on a series of SFRC(steel fiber reinforced concrete) to investigate the fatigue behavior of SFRC varying with the steel fiber contents and the steel fiber aspect ratios. The three point loading system is used in the fatigue tests. In tl1ese tests, relations between the repeated loading cycles and the mid-span deflections, number of repeated loadmg cycles when specimen was fractured were observed. On this basis, the mid-span deflections, the elastic strain energy and inelastic strain energy of SFRC were studied. A S - N curve \vas drawn to present the fatigue strength of SFRC beam. From che test results, by increasing the steel fiber content the energy lost on the permanent deformation decreases and the energy spent on crack growth increases. But in case of SFRC with the same steel fiber content the higher the steel fiber aspect ratio is, the less the elastic strain energy is. According to S - N curve drawn by the regression analysis on the fatugue test results, the fatigue strength with 2,000,000 repeated loading cycles in SFRC with the steel fiber content is 1.0% shows about 70% on the first crack static flexural strength.

An Experimental Study on Post-Cracking Tension Behavior of Steel Fiber Reinforced Concrete -Focused on Tension Stiffening Effect of Steel Fiber Reinforced Concrete- (강섬유보강콘크리트의 균열 이후의 인장거동에관한 실험적 연구 -강섬유보강콘크리트의 인장강성 증대효과를 중심으로-)

  • 서상교
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.1
    • /
    • pp.79-85
    • /
    • 1991
  • This paper aims at experimentally investigating the relationship between tensile load and average strain in the tension zone of SFRC beam. Also, it is attempted to find post cracking tension behavior of SFRC under tensile loading condition. The tension stiffening test is conducted on the long prizm of SFRC which embeds reinforcing bar in both ends of member. From this study, an empirical equation which represents the tension stiffening effect(i.e.effect of increasing tensile-~3trengthening contnbuted by SFRC when the reinforcing bar embeded in the SFRC member is under tensile loading condition) as a function of the average strain is presented .

Evaluation of Mechanical Properties and Crack Resistant Performance in Concrete with Steel Fiber Reinforcement and CSA Expansive Admixture (CSA 팽창재를 혼입한 강섬유 보강 콘크리트의 역학적 성능 및 균열 저항성능 평가)

  • Choi, Se-Jin;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2014
  • In order to prevent brittle failure of concrete, steel fiber reinforcement is effective composite material. However ductility of steel fiber reinforced concrete may be limited due to shrinkage caused by large content of cement binder. Chemical prestressing for steel fiber reinforcement in cement matrix can be induced through expansive admixture and this can increase reinforcing effect of steel fiber. In this study, mechanical performances in concrete with CSA (Calcium sulfoaluminate) expansive admixture and steel fiber reinforcement are evaluated. For this work, steel fiber reinforcement of 1 and 2% of volume ratio and CSA expansive admixture of 10% weight ratio of cement are added in concrete. Mechanical and fracture properties are evaluated in concrete with steel fiber reinforcement and CSA expansive admixture. CSA concrete with steel fiber reinforcement shows increase in tensile strength, initial cracking load, and ductility performance like enlarged fracture energy after cracking. With appropriate using expansive admixture and optimum ratio of steel fiber reinforcement, their interactive action can effectively improve brittle behavior in concrete.

Evaluation of Shear Strength in SFRC Beam without Stirrups Considering Steel Fiber Strengthening Factor (강섬유 보강계수를 고려한 전단보강 되지 않은 SFRC 보의 전단내력 평가)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.213-220
    • /
    • 2004
  • The purpose of this study is to evaluate the shear strength of SFRC beam that has no stirrups by steel fiber strengthening factor. To achieve the goal of this study, two stage investigation, which is material and member level, is studied with literature and experimental side. From the reviewing of previous researches and analyzing of material and member test results, strengthening parameter of SFRC is defined as steel fiber coefficient. Based on above results, steel fiber strengthening factor is proposed. And by reviewing the proposed equation of shear strength estimation, equation of Shin was well estimated the shear strength of SFRC beams. Therefore, shear strength equation of SFRC, which is composed by Shin's Eq. and steel fiber strengthening factor, is proposed by regression analysis of test results.

Evaluation of Effective Toughness of Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트의 유효인성 평가)

  • 구봉근;정경섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.2
    • /
    • pp.103-110
    • /
    • 1992
  • 본 연구는 인성지수에 의하여 섬유보강 콘크리트의 인성을 평가하는 기존의 여러 가지 방법을 검토하는, 하중-처짐곡선에서 초기균열시까지의 여러 가지 다른 곱으로 나타내어지는 방법의 불합리성을 지적하였다. 이를 위하여 본 연구에서는 유효인성이라고 부르는 새로운 방법을 강섬유 보강콘크리트의 인성을 평가하는데 제안하였다. 이는 초기균열을 가진 3점 휨강도 시험에 의한 하중-처짐곡선에서 지간의 1/150까지의 면적을 ligament면적으로 나눈값으로 나타낸다. 이 방법을 사용하여 강섬유 보강 고강도 콘크리트 인성특성을 검토한 결과 기존의 방법보다 더 효과적으로 인성을 평가할 수 있었다.

Estimation of The Basic Properties of Two-Lift Concrete Pavement to Apply Korea Condition (이층 포설 콘크리트 포장의 국내 적용을 위한 강섬유 보강 콘크리트 기초 물성평가)

  • Won, Hong-Sang;Ryu, Sung-Woo;Hong, Jong-Yong;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 2010
  • This study had a focus on investigating technical validity of Two-Lift Concrete Pavements which had never been constructed in Korea in order to olve the problem of existing concrete pavements. This study found out the application of Steel Fiber Reinforced Concrete (SFRC) which was one of ew techniques. Also, optimal steel fiber contents and pavement thickness were determined. This study also measured compressive strengths, lexural strengths, toughness indexes, tensile strengths and fatigue strengths to estimate the performance of SFRC of according to results of aboratory experiments, slumps and air contents of concrete specimens the standards satisfied and compressive strengths to open traffic. At bending ests, Toughness Index of SFRC increased but flexural strength didn’'t increase as compared with non-steel fiber concretes. And, energy absorption of SFRC was very good and SFRC showed improvement in freezing and thawing resistances. To complete this research, we will evaluate the pplication methods and performance of SFRC at field section.