• Title/Summary/Keyword: 강상판

Search Result 54, Processing Time 0.024 seconds

Hybrid Control Strategies for Seismic Protection of Benchmark Cable-Stayed Bridges (지진하중을 받는 벤치마크 사장교를 위한 복합제어 기법)

  • Park, Kyu-Sik;Jung, Hyung-Jo;Lee, Chong-Heon;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.435-442
    • /
    • 2002
  • 본 연구에서는 사장교의 제어기법 개발을 위한 구조물로 제공되는 벤치마크(benchmark) 사장교에 대해 복합제어 기법을 적용하였다. 이 벤치마크 문제에서는 2003년 완공 예정으로 미국 Missouri 주에 건설 중인 Cape Girardeau 교를 대상 구조물로 고려하였다. Cape Girardeau 교는 New Madrid 지진구역에 위치하고, Mississippi 강을 횡단하는 주요 교량이라는 점 때문에 설계단계에서부터 내진 문제에 대하여 자세하게 고려되었다. 상세 설계도면을 기반으로 하여 교량의 전체적인 거동 특성을 정확하게 나타낼 수 있는 3차원 모델이 만들어졌고, 사장교의 제어 성능에 관련된 평가 기준이 수립되었다. 본 연구에서 사용한 복합제어 기법이란 지진하중으로 인해 구조물에 발생되는 하중을 줄이기 위한 수동제어 기법과 상판변위와 같은 구조물의 응답을 추가적으로 제어하기 위한 능동제어 기법이 결합된 제어방법이다. 수동제어 장치로는 현재 일반적으로 많이 사용되고 있는 납고무받침(lead rubber bearing)을 사용하였다. 능동제어 방법에는 $H_2$/LQG 제어 알고리듬(algorithm)을 사용하였다. 수치해석 결과 제안방법의 성능은 수동제어 방법에 비해 매우 효과적이며, 능동제어 방법에 비해서는 좀더 좋은 제어성능을 나타내었다. 또한, 복합제어 방법은 수동제어 부분 때문에 능동제어 방법에 비해 좀더 신뢰할 수 있는 제어 방법이다. 따라서 제안된 제어방법은 지진하중을 받는 사장교의 제어를 위해 효과적으로 사용될 수 있다.

  • PDF

Buckling Strength of Orthogonally Stiffened Steel Plates under Uniaxial Compression (일축압축을 받는 직교로 보강된 판의 좌굴강도)

  • Choi, Dong Ho;Chang, Dong Il;Choi, Hang Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.731-740
    • /
    • 1998
  • Orthogonally stiffened steel plates are used for orthotropic steel decks of long-span bridges because of high degree of flexural and torsional resistances and good load-distribution behavior. An analytic study is presented for evaluating the buckling strength of orthogonally stiffened plates subjected to uniaxial compression. By using the plate theory, the buckling stress under overall and partial buckling modes, is derived. Parametric studies are performed to show the effects of the stiffness and the number of transverse and longitudinal ribs on the buckling strength. The results show quantitatively strong influence of stiffness and spacing of longitudinal and transverse ribs.

  • PDF

A Fundamental Study on the Effects of Pavement Stiffness to the Structural Behavior of Orthotropic Steel Plate Deck (포장체의 강성이 강상판의 거동에 미치는 영향에 관한 기초연구)

  • Lee, Hwan-Woo;Jung, Du-Hwoe
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.191-198
    • /
    • 2003
  • The pavement stiffness is scarcely used in structural analysis to design the superstructure of bridge. It is reasonable not to consider it in the case of asphalt concrete pavement over concrete deck because the pavement stiffness compared with the concrete deck plate can be ignored. However, sometimes, the pavement materials have a similar amount of elastic modulus to concrete and are applied to the orthotropic steel deck plate which has relatively less stiffness compared with the concrete deck plate. In this paper, the steel plate deck of a real bridge project was analyzed by considering the pavement stiffness by linear elastic FEM. It was assumed that a perfect bond between the steel plate deck and the pavement exited. The results indicated that the structural behavior of the orthotropic steel deck plate can be estimated enough to affect the evaluation result of structural capacity in some cases. Therefore, the investigations by experimental tests and more advanced numerical model are indispensible in figuring the design formula for considering the effects of pavement stiffness in the structural analysis of an orthotropic bridge.

System Optimization of Orthotropic Steel-Deck Bridges by Load and Resistance Factor Design (LRFD에 의한 강상판형교의 시스템 최적설계)

  • 조효남;민대홍;김현우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.262-271
    • /
    • 1998
  • Recent, more and more steel deck bridges are adopted for the design of long span bridges and the upgrading of existing concrete deck bridges, mainly because of reduced self weight, higher stiffness and efficient erection compared to concrete decks. The main objective of this study is to propose on formulation of the design optimizations to develop an optimal desist program required for optimum desist for orthotropic steel-deck bridges. The objective function of the optimization is formulated as a minimum initial cost design problem. The behavior and design constraints are formulated based on the ASD and LRFD criteria of the Korean Bridge Design Code(1996). The optimum design program developed in this study consists of two steps. In the first step the system optimization of the steel box girder bridges is carried out. And in the second step the program provided the optimum design of the orthotropic steel-deck with close ribs. In the optimal design program the analysis module for the deck optimization is based on the Pelican Esslinger method. The optimizer module of the program utilizes the ADS(Automated Desist Synthesis) routines using the optimization techniques fuor constrained optimization. From the results of real application examples, The cost effectiveness of optimum orthotropic steel-deck bridges designs based on both ASD and LRFD methods is investigated by comparing the results with those of conventional designs, and it may be concluded that the design developed in this study seems efficient and robust for the optimization of orthotropic steel-deck bridges

  • PDF

Effects of Pavement Stiffness on the Structural Behavior of Orthotropic Steel Plate Deck (포장체의 강성이 강상판의 거동에 미치는 영향)

  • 이환우;박순호;이동준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.385-392
    • /
    • 2001
  • The stiffness of pavement is scarcely considered in structural analysis of the superstructure bridge. It will be reasonable in the case of asphalt concrete pavement over concrete deck plate because stiffness of the pavement compared with concrete deck plate can be ignored. Additionally, it is considered correct to do a design with a safety. However, various pavement materials which have even value reaching to the elastic modulus of concrete are applied to the orthotropic steel deck plate which has a relatively less stiffness comparing with the concrete deck plate. In this paper, the steel plate deck of the bridge of real project was modeled considering the pavement stiffness for the FEM analysis and the linear elastic analysis was performed. It was assumed to be perfectly bonded between the steel plate deck and the pavement and the temperature effect was ignored. It was analyzed on the vertical deflection of steel deck plate influencing to the serviceability of pavement and the bending stress of steel deck plate related to the fatigue life. As a result, It was indicated that the structural behavior of the orthotropic steel deck plate could be affected by the stiffness of pavement in some cases.

  • PDF

The Effect and Countermeasures of The Vertical Track Settlement Caused by Expand and Contract Behavior of the High-Speed Railway Bridge Girder (고속철도 교량상판의 온도신축작용이 궤도처짐에 미치는 영향과 대책에 관한 연구)

  • 강기동
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.283-289
    • /
    • 2004
  • According to continuos welded rails on a bridge, temperature changes bring about the expansion of the bridge deck adding axil forces on the track. Moreover, the ballast on the bridge deck expansion joint is moved due to the bridge deck. If bridge decks are longer, the influence is greater, loosening ballast, causing track irregularities, and deteriorating passengers' comfort. Considering structure of bridge itself and tolerance of track irregularities caused by the loosened ballast on bridges, the maximum length of a deck should be less than 80m, which is the same as the standard of the French railway. In this study, an interaction between the expansion related to the bridge length and irregularity in longitudinal level referring to measurements and maintenance works performed in the high-speed railways was analyzed. This research shows that installation of sliding plate or vertical ballast stopper is not a good option since it is difficult to install. On the other hand, installation of movable fastener or gluing is easy but its influence is insignificant. To conclude, switch tie tamping or manual tamping is more effective than others.

디스플레이용 PDP의 X-ray에 대한 반응특성 평가

  • Yun, Min-Seok;Jo, Seong-Ho;Gang, Sang-Sik;Cha, Byeong-Yeol;Kim, So-Yeong;Son, Dae-Ung;Heo, Seung-Uk;Nam, Sang-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.531-531
    • /
    • 2007
  • 현재 널리 사용되고 있는 X선 영상 검출기의 문제점을 해결하기 위해 새로운 연구가 활발히 진행되고 있다. 본 논문에서는 새로운 X선 검출기로써의 가능성 제시를 위해 Display용 PDP(Plasma Display panel)를 디지털 X-ray Detector로 적용하기 위한 기본적인 X-ray에 대한 반응성을 검증하였다. PDP의 X-ray Detector로의 사용 가능성을 보기 위하여, 실험에 사용된 panel은 상용화된(commercial) Display용 PDP의 기본적인 구조와 똑같은 구조의 sample을 제작하여 사용하였다. 제작된 panel은 상판에 Substrate glass와 유전체층, 투명전극을 형성하고, 버스 전극층과 MgO층을 형성하였다. 하판에는 격벽을 제작하고 형광체(R.G.B)층을 형성하고, 어드레스 전극을 형성하여 기존의 Display용 PDP와 똑같은 구조를 지니게 하였다. 이렇게 제작된 panel의 X-선 검출기로서의 전기적 특성물 조사하기 위해 누설전류(Dark current), X선 민감도(X-ray sensitivity), 그리고 선형특성(Linearity)을 측정하였다. 측정 결과, 누설전류가 낮고 X-선 검출기로서의 가능성이 충분한 민감도를 보이며, 선형적 특성 또한 우수한 결과를 보이는 등 안정된 전기적 동작특성을 보였다. 이러한 결과로부터 기존에 사용되어오던 디스플레이용 PDP의 구조적 변경을 통하여 상용화된 PDP룰 디지털 X-선 검출기로서의 적용 가능성을 확인할 수 있었다.

  • PDF

Analysis of Stress Behavior on Field Welded Joints of U-rib in Steel Bridge (U리브 현장용접이음부 응력거동에 관한 연구)

  • Kang, Chang Ib;Choi, Seong Min;Kook, Seung Kyu;Lee, Dong Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.387-396
    • /
    • 2004
  • In this paper, stress analysis anda 3-point bending fatigue test were conducted on the full-scale specimen to investigate the effects of misalignment at the U-rib welded joint due to misfitting in the steel deck bridge. In addition, the researchers investigated the direction and starting point of fatigue cracks by SEM (Scanning Electron Microscope) and beach mark. The results of the stress analysis show that maximum stress occurred at the bottom corner of the U-rib, and that the stress was large when the magnitude of the misalignment was large. On the other hand, the results of the static loading test of the full-scale specimen show that stress was large at the bottom corner of the U-rib. In addition, fatigue life was short when the misalignment was large and fatigue life was short when the misalignment was large and fatigue life was short when the misalignment was large and fatigue life was large when the misalignment was small, as indicated by the results of both the static loading test and the fatigue test. From the observation of the failure surface, fatigue cracks began manifesting at the root of the base metal and proceeded to the bead surface (weld toe).

A Study on Approximate Analysis of Steel Deck Bridges with Guss Asphalt Using Influence Line (영향선을 이용한 강상판 교량의 구스 아스팔트 포장에 대한 근사해석 연구)

  • Seo, Ki-Hong;Ka, Hoon;Kong, Min-Sik;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.127-135
    • /
    • 2006
  • In this study, steel deck bridges are chosen as analytic model to show the structural behaviors generated by high temperature of pavement and to formulate the simplified approximate analysis of thermal effects. In general, the thermal effect is changed by the material property of pavements and environmental temperature as well as shape, size and boundary conditions of bridge. Specially, this effect is the representative initial stress problem dependent on time. The thermal effect, however, does not depend on time and thermal effect is regarded as initial load in this study. After these thermal loading is modelled as moving loads, influence lines of reactions of shoes are calculated and the successive pavement steps with arbitrary segments are determined to minimize the thermal effect of shoes by influence line.

Dynamic Behavior of the Prestressed Composite Girder by Modal Tests and Moving Train Analysis (프리스트레스트 강합성 거더의 모달테스트 및 이동 열차하중 해석에 의한 동적거동)

  • Kim, Sung Il;Lee, Pil Goo;Lee, Jung Whee;Yeo, In Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.793-804
    • /
    • 2006
  • Various PSC and steel-concrete composite railway bridges are being developed for short-medium spans with structural and economic efficiency. According to the design concept, the prestressed composite girder bridge has the advantages of being lightweight and having low girder depth, with the capacity for long spans. However, the dynamic behavior under a passing train is one of the critical issues concerning these railway bridges designed with more flexibility. Therefore, it is very important to evaluate the modal parameters before performing dynamic analyses. In this paper, real-scale prestressed composite girders were fabricated as a test model and modal testing was carried out to evaluate modal parameters including natural frequency and modal damping ratio. During the modal testing, a digitally controlled vibration exciter as well as an impact hammer was applied to obtain frequency-response functions, and the modal parameters were also evaluated after the fracture of test models. With application of reliable properties from modal tests, the estimation of dynamic performances of prestressed composite girder railway bridges can be obtained from various parametric studies on dynamic behavior under the passage of a moving train.