• Title/Summary/Keyword: 강도 증진

Search Result 1,042, Processing Time 0.027 seconds

Study on the Hydration and Strength Properties of Fly-ash Modified Cement Paste and Mortar Using a CSA and Pulp Ash (CSA 및 제지애쉬를 혼합재료 사용한 플라이애쉬 시멘트 모르타르의 수화 및 강도 특성에 관한 연구)

  • Song, Tae-Hyeob;Lee, Sea-Hyun;So, Chee-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.81-88
    • /
    • 2005
  • The fly ash has been widely used in the latest to complement the performance and economical efficiency of the concrete which uses only a normal portland cement, the pulp ash gained through the incineration of paper sludge is possible to be used as the material of concrete because it contains the properties similar to the previous fly ash in ingredients and physical characteristics. Therefore, this research has tested physical characteristics by replacing 20% of fly ash used with the paper ash to solve the problem which lowers the early strength caused when the fly ash was used. As a result, it showed that the fluidity becomes lower and the compressive strength becomes increased by using paper ash. In addition, after mixing the paper ash with the fly ash, it showed that time and heating amount of the 2nd peak of the minor heat of hydration affecting the revelation of strength was equivalent to the combination for normal portland cement, and also indicated that the compressive strength for 3 days is superior to the combination of the fly ash. Therefore, if the paper ash having a regular fineness is used, it was effective in improving the early strength of concrete used the fly ash.

  • PDF

Salty Taste Enhancing Effect of Enzymatically Hydrolyzed Anchovy Protein (멸치 단백질 효소가수분해물의 강도평가를 통한 짠맛증진효과)

  • Youn, So Jung;Cha, Gyung-Hee;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.751-756
    • /
    • 2015
  • Sodium chloride is known to contribute to the quality and safety of foods. However, there is an increasing interest in reducing the sodium content in foodstuffs, owing to health-related concerns related to its overconsumption. Therefore, the possible use of enzymatically hydrolyzed anchovy protein (eHAP) in enhancing the intensity of the salty taste in model broth was investigated in this study. The sodium chloride content of eHAP was 67.7 g/L. The lightness (L) and yellowness (b) of the model broth increased with increasing eHAP concentration. Additionally, the perceived intensity of the salty taste of eHAP solutions increased with increasing amounts of eHAP at a given NaCl concentration in the model broth. The intensity of the salty taste was enhanced by 0.37-35.58% as eHAP was added. The results suggest that it may be possible to reduce the sodium chloride content in foods by enhancing the salty taste with eHAP.

Mechanical Characteristics of Ultra High Strength Concrete with Steel Fiber Under Uniaxial Compressive Stress (강섬유로 보강된 초고강도 콘크리트의 일축압축 상태에서의 기계적 특성)

  • Choi, Hyun-Ki;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.521-530
    • /
    • 2015
  • Design of fiber reinforced ultra-high strength concrete members should be verified with analytical or experimental methods for safety. Members with compressive strength larger than limitation of current design code usually be designed with analytical verification using stress-strain relation of concrete and reinforcements. For this purpose, mechanical characteristics of steel fiber reinforced ultra-high strength concrete were defined under uniaxial compression. Mix proportions of test specimens were based on reactive powder concrete and straight steel fibers were mixed with different volume fraction. Compressive strength of matrix were distributed from 80 MPa to 200 MPa. Effect of fiber inclusion were investigated : increase of compressive strength of concrete, elastic modulus and strain corresponding to peak stress. For the wide range application of investigation, previously tested test specimens were collected and used for investigation and estimation equation. Based on the investigation and evaluation of previous research results and estimation equation of mechanical characteristics of concrete, regression equations were suggested.

Mixture Study for Early-age Strength Improvement of NAC-typed High-strength Concrete Piles (NAC 방식 고강도 콘크리트 파일의 초기강도증진을 위한 배합에 대한 연구)

  • Yi, Seong Tae;Noh, Jae Ho;Heo, Hyung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.58-64
    • /
    • 2012
  • Due to the influence of global oil prices, industrial productivity, which oil consumption is high, was significantly reduced. AC type of high-strength PHC piles is being manufactured through twice the steam curing process and this have resulted in a significant rise for product's manufacturing costs. NAC way other types of file manufacturing process has the advantage of reducing manufacturing costs by a turn of the steam curing. Nevertheless, because the initial strength be poor than that of AC method, shipment is being after the curing period of approximately three days. In addition, the growth of the product enhance with curing period can not be avoided, as a result, cost of inventory is acting as the rise. Piles by the AC method is immediately shipped after curing, damaging problems does not occur when they are introduced to the field site (for example, pile on-site). In the case of NAC, however, at least after the curing period of three days and after expressing the strength of 80 MPa or more, they are shipped on the scene. Therefore, NAC type has problems as follows: (1) increase in moderate inventory holding costs with type and (2) breakage in the field due to lack of strength. In this study, for NAC-typed PHC files, mixing characteristics research for the strength development at 1 day equivalent to AC method were conducted and strength characteristics with changes of original materials were evaluated were also identified.

Preparation of Fiber-Reinforced $\gamma-LiAlO_2$ Matrixes by the Tape Casting Method (테이프캐스팅법에 의한 화이버 강화 $\gamma-LiAlO_2$ 메트릭스의 제조)

  • 현상훈;백계현;홍성안
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.303-313
    • /
    • 1997
  • To enhance the strength and formability of MCFC matrixes, alumina/${\gamma}$-LiAlO2 fiber-reinforced ${\gamma}$-LiAlO2 ma-trixes have been investigated. The MCFC matrixes with the thickness of 500~600 ${\mu}{\textrm}{m}$ were prepared by tape-casting of the slurry containing 10~30wt% fibers, followed by heat-treating up to $650^{\circ}C$. The porosity of fi-ber-reinforced matrixes decreased with the content of fibers, while the appropriate porosity(50~60%) for MCFC matrixes could be attained by adding larger ${\gamma}$-LiAlO2 particles with the diameter of about 50${\mu}{\textrm}{m}$ up to 50 wt%. The optimum length and content of the alumina fiber, both in the alignment of fibers and the enhancement of the strength, were found to be below 250${\mu}{\textrm}{m}$ and 20 wt%, respectively. On the other hand, the strength(156 gf/$\textrm{mm}^2$) of the ${\gamma}$-LiAlO2 matrix reinforced with ${\gamma}$-LiAlO2 fibers prepared in this study was improved by 20~40% in comparison with the alumina-fiber-reinforced matrix. It was also found that the alu-mina-fiber-reinforced matrix was completely corroded in molten carbonates but the ${\gamma}$-LiAlO2 was not.

  • PDF

Application of Cold Weather Concreting with Accelerator for Freeze Protection to Full Scale Structures (내한촉진제를 사용한 한중콘크리트의 실구조물 적용에 관한 연구)

  • Kim, Young-Jin;Baek, Tae-Ryong;Lee, Sang-Soo;Won, Chul;Kim, Dong-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.254-262
    • /
    • 2003
  • In this study, the results of applying cold weather concreting mixed with Accelerator for Freeze Protection(AFP) to full scale structures are presented. Since the determination of W/C and amount of AFP significantly have an effect on strength gain and protection of frost damage in early, a full investigation is needed to determine these values at stage of nux design. The flowability of fresh cold weather concreting with AFP was similar to the same W/C. Lower loss of workability and initial slump flow of concrete using superplasticizer of polycarboxylic ester than that of melamine sulphonate showed that polycarboxylic ester was more effective on elapsed time. Temperature histories of specimens located in insulation boxes at the site was similar to that of structures. Thus, it is cleared that simple adiabatic curing method is effective for evaluating in-place concrete strength than specimens cured by sealing method. The investigation results of development of compressive strength of cold weather concreting included AFP with curing methods by logistic curves indicated that AFP can be effective to gain strength at lower temperature than normal curing temperature. In field testing, vinyl sheets were placed over the concrete sections and AFP enabled concrete to gain $5N/{mm}^2$ to protect frost damage in early ages and specified compressive strength of concrete at 28 days under average temperature of $-2^{\circ}C$ (lowest temperature was $-12^{\circ}C$) during site application.

Development of a Chem-E-Car curriculum model for Creative Engineering Education (창의적 공학교육을 위한 Chem-E-Car 강의안 개발)

  • Kim, Ji-Yong;Kim, Hong-Seong;Lim, Jong-Koo;Moon, Il
    • Journal of Engineering Education Research
    • /
    • v.9 no.3
    • /
    • pp.5-21
    • /
    • 2006
  • The engineer's creativity is becoming more important as high value-added products are required. In this paper, a new curriculum model for creative engineering education has been developed. This study proposes the method of applying Chem-E-Car to the chemical engineering education for students to develop creativity. The Chem-E-Car is used as a given problem to students for developing safety study, teamwork, communication skill and creativity. The PBL(problem based Learning) is used in the class. The problem in this case is to make the Chem-E-Car, a shoebox sized car powered only by chemical reactions. Four types of Chem-E-Car such as turbine, rocket, voltaic cell and fuel cell are developed through out this program. The fuel cell powered Chem-E-Car is emphasized to students as new problems with constraints. This paper shows how the students solved the problems with creativity.

Tensile Strength and Tensile Adhesive Strengths of Polymer-Modified Mortar with Methyl Methacrylate-Based Latexes (MMA계 라텍스를 혼입한 폴리머 시멘트 모르타르의 인장강도 및 부착강도)

  • Hyung, Won-Gil;Lee, Chan-Tae;Park, Sung-Moo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.247-252
    • /
    • 2010
  • This paper investigates the effects of the monomer ratios on the typical properties of polymer-modified mortars that contain methyl methacrylate-based latexes. Basic data are also obtained to develop appropriate latexes for cement modifiers. Polymer-modified mortars that contain methyl methacrylate latexes copolymerized with butyl acrylate or ethyl acrylate are prepared for different polymer-cement ratios. They are then tested to obtain the tensile and tensile adhesive strengthes of polymer-modified mortar with methyl methacrylate-based latexes. From the test results, the tensile strength of MB7 polymer-modified mortar was higher than normal cement mortar by a maximum of 94% with a 20% polymer-cement ratio, which was almost twice higher than normal. The tensile adhesive strength of the MB polymer-modified mortar was higher for higher MMA monomer contents and polymer-cement ratios, and increased up to four times than that of normal cement mortar. The basic properties of the polymer-modified mortars are more affected by the polymer-cement ratio than by the monomer ratio, and are improved over unmodified mortar.

Improvement of Early Strength of Blast-Furnace Slag Blended Cement at Low Temperature (고로 슬래그 시멘트의 저온 조기 강도 증진)

  • 장복기;임용무;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.130-135
    • /
    • 1999
  • The enhanced slag fineness and the batch water of low water-to-cement ratio(W/C) were employed in order to improve the early strength of blast-furnace slag blended cement at low temperature. A grinding aid was used to grind the blast-furnace slag into the fineness of 6,280$\textrm{cm}^2$/g (Blaine), and this fine slag was then homogeneously mixed with the ordinary Portland cement to produce the blast-furnace slag blended cement containing 40% slag by weight composition. On the other hand, the batch water could be reduced from W/C=0.50 (KS L 5105) to W/C=0.33 through a commercial, naphthalene type superplasticizer. Through the method mentioned above, the early strength of the blast-furnace slag blended cement at low temperature could be enhanced even somewhat higher than the Portland cement strength. And the microsturcture of the cement was studied by both the pore structure analysis and the A.C. impedance measurement.

  • PDF

Seismic Capacity of Non-seismic Designed RC Framed Building Retrofitted by Double I-type Metallic Damper (더블 I형 감쇠장치로 보강한 비내진 RC 골조의 내진성능 평가)

  • Hur, Moo-Won;Chun, Young-Soo;Hwang, Jae-Seung;Kim, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.10-17
    • /
    • 2015
  • In this study, to examine seismic reinforcement effect of a school building constructed prior to application of seismic design, a Double I-type damper supported by wall was installed to perform comparative analysis on existing non-seismic designed RC frame. As a result of experiment, while non-seismic designed specimen showed rapid reduction in strength and brittle shear destruction as damages were focused on top and bottom of left and right columns, reinforced specimen showed hysteretic characteristics of a large ellipse with great energy absorption ability, exhibiting perfectly behavior with increased strength and stiffness from damper reinforcement. In addition, as a result of comparing stiffness reduction between the two specimens, specimen reinforced by shear wall type damper was effective in preventing stiffness reduction. Energy dissipation ability of specimen reinforced by Double I-type damper was about 3.5 times as high as energy dissipation ability of non-reinforced specimen. Such enhancement in energy dissipation ability is considered to be the result of improved strength and deformation.