• Title/Summary/Keyword: 강도평가

Search Result 7,242, Processing Time 0.034 seconds

The Effect of Mixing Ratio of Blast Furnace Slag and Fly Ash on Material Properties of 80MPa High Strength Concrete with Ternary Cement (고로슬래그와 플라이애시 대체율이 80MPa 3성분계 고강도콘크리트의 재료물성에 미치는 영향)

  • Lee, Bum-Sik;Jun, Myoung-Hoon;Lee, Do-Heun
    • Land and Housing Review
    • /
    • v.3 no.3
    • /
    • pp.287-297
    • /
    • 2012
  • To develop 80MPa-high strength concrete with ternary cement used in OPC, blast-furnance slag, and fly ash, mixing ratio of blast-furnace slag and fly ash was evaluated in material characteristics before and after hardening of the high strength concrete. According to the evaluated results of material characteristics before and after hardening of the high strength concrete, the flowability and long-term compressive strength increase up to 30% mixing ratio of blast-furnace slag and fly ash. Also, it is superior to characteristics of length change and neutralization due to the use of mineral admixture when compared in test sample mixed with OPC. The evaluated results show that material characteristics of the high strength concrete was the most outstanding performance at blast-furnace slag of 25% and fly ash of 15%. The result of this study will be useful for the development of high strength concrete as a substitute of costly silica fume in the near future.

Evaluation of Strength and Durability of Mortar using Ferronickel Slag Powder and Admixtures (페로니켈슬래그 미분말 및 혼화재의 복합사용에 따른 모르타르의 강도 및 내구성 평가)

  • Jo, Seol-Ah;Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.262-270
    • /
    • 2019
  • Ferronickel slag, which is an industrial byproduct, is activated by mechanochemical reaction as a nonferrous metal and can be used as an admixture. Therefore, ferronickel slag is used as a substitute resource of admixture. In this study, to evaluate the effect of mixed of ferronickel slag powder and admixture, a mortar using a mixture of ferronickel slag powder, quicklime, gypsum and calcium chloride was fabricated by vibrated and rolled manufacturing method. Strength were evaluated by flexural and compressive strength tests, and durability was evaluated by performing chlorine ion penetration resistance and chemical resistance test. When the substitution ratio of ferronickel slag powder is constant, it is considered that the mixed use of quicklime, gypsum and calcium chloride as admixtures increases the performance.

Experimental Study on Long-Term Performance Evaluation of Geosynthetic Strip Reinforcement (띠형 섬유보강재의 장기성능 평가를 위한 실험적 연구)

  • Lee, Kwang-Wu;Kim, Ju-Hyeung;Cho, Sam-Deok;Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.75-84
    • /
    • 2010
  • In this study, the long-term performance tests, which have extensibility, creep deformation, installation resistance and durability characteristic, is conducted to apply geosynthetic strip in field. The strength reduction factors using the test results are evaluated in order to calculate long-term design tensile strength. First, the creep deformation was evaluated by both the stepped isothermal method(SIM) and the time-temperature superposition(TTS) method. The creep reduction factor is reasonable to apply 1.6. Second, the result of installation damage test had little damage of yarn, which affected strength of reinforcement. Therefore, it can be analyzed that the installation damage of geosynthetic strip has little effect of long-term design tensile strength. Finally, the durability reduction factor considering chemical, biological and outdoor exposure resistance is reasonable to apply 1.1, which is considered the stability and economic efficiency of reinforced earth wall using geosynthetic strip.

  • PDF

Strength and Ductility of Steel Fiber Reinforced Composite Beams without Shear Reinforcements (전단보강근이 없는 강섬유 보강 합성보의 강도 및 연성 능력)

  • Oh, Young-Hun;Nam, Young-Gil;Kim, Jeong-Hae
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.103-111
    • /
    • 2007
  • Experimental study was carried out to investigate the structural performance of composite beams with steel fiber concrete and angle. For this purpose, seven specimens composed of two RC beams with or without steel fiber and five composite beams with steel fiber and angle were constructed and tested. All specimens had no web shear reinforcement. Main variables for the specimens were tensile reinforcement ratio and fiber volume fraction. Based on the test results, structural performance such as strength, stiffness, ductility and energy dissipation capacity was evaluated and compared with the predicted strength. The prediction of flexure and shear strength gives a good relationship with the observed strength. The strength, ductility and energy dissipation capacity are increased, as the fiber volume fraction is increased. Meanwhile, high tensile reinforcement ratio resulted in the reduction of ductility and energy dissipation capacity for the composite beams.

Flexural performance evaluation of SFRC with design strength of 60 MPa (TBM 터널 세그먼트용 60 MPa급 강섬유보강콘크리트의 휨성능 평가)

  • Moon, Do-Young;Kang, Tae-Sung;Chang, Soo-Ho;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.175-186
    • /
    • 2013
  • Based on Model Code 2010, flexural and residual strength, flexural toughness of SFRC with design strength of 60 MPa are evaluated. For comparisons, SFRC with design strength 40 MPa was tested. Distribution of steel fibers in crack surface of specimens was evaluated by visual inspection. The used steel fibers were hooked fibers with aspect ratio of 64, 67 and 80. In all specimens, mix ratio of steel fibers was 0.5% Vol. In results, only SFRC with the highest aspect ratio satisfied requirements specified in Model Code 2010. The results demonstrated that the use of high aspect ratio will provide enough flexural toughness for high strength concrete. Also, it is found that low slump of high strength concrete can help to enhance isotropic fiber distribution.

Strength Evaluation of a Doubler Plate of Ship Structure subjected to the Biaxial In-plane Compression (양축방향 면내 압축하중을 받는 선박 이중판의 강도 평가)

  • Juh-Hyeok Ham
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.72-85
    • /
    • 2001
  • A study for the structural strength evaluation on the doubler plate subjected to the biaxial in-plane compression has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate, elasto-plastic large deflection analysis is introduced including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed based on their results. A1so, in order to compare the doubler structure with the original strength of main plate without doubler, a simple formula for the evaluation of the equivalent flat plate thickness is derived based on the additional series analysis of flat plate structure. Using this derived equation, the thickness change of a equivalent flat plate is analyzed according to the variation of various design parameters of doubler plate and some design guides are suggested in order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent flat plate formula and the developed buckling strength formulas by author et a1. is discovered and these relations are formulated for the future development of simple strength evaluation formula of doubler plate structure.

  • PDF

Weathering Characteristics of Rock under Natural Environment and Strength Evaluation of Weathered Rock (자연환경하에서 암석의 풍화특성과 풍화암석의 강도평가)

  • Kang, Dae-Wan;Obara, Yuzo;Hirata, Atsuo;Kang, Seong-Seong
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.460-470
    • /
    • 2011
  • Wave velocity was measured to define the weathering characteristics of rock and the strength evaluation of weathered rock on a target of the Aso gravestones with various sizes under the natural environment. As a result, the size correction method which was changed sample of the different size to one of the same size for evaluating wave velocity was proposed, and also suggested the NET (Normalized Elapsed Time) as a new weathering index of rock. In addition, the strength of the weathered rock was estimated from the weathering classification of rock using the NET. Wave velocity of welded tuff was high and didn't show velocity degradation, on the other hand, one of andesite was low and showed velocity degradation. The degree of weathering between rocks of the different size is considered to be comparable, applying the NET based on the on the $V_p/V_o$-NET curve. Furthermore, the classification of rock weathering stages using the NET based on the $S_c/S_o$-NET curve was available, and the estimation of strength for the weathered rock was also possible.

Evaluation on Strength Characteristics of Reactive Materials to Prevent the Diffusion of Organic Pollutants (유기오염물 차단을 위한 반응재료의 강도 특성 평가)

  • Jai-Young Lee;Seung-Jin Oh;Su-Hee Kim;Kicheol Lee;Jeong-Jun Park;Gigwon Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.35-42
    • /
    • 2023
  • This paper described the strength variation characteristics to evaluate the applicability of a reactive material that can absorb organic pollutants as an underground barrier. The Strength was evaluated by unconfined compression test. The test results showed that the strength of the reactive material according to the absorption of each pollutant was in the order of water > TCE > TPH. However, the strength of the reactive material absorbing TPH was greater than that of the case absorbing TCE, when the composition ratio of polynorbornene was 12% or less. The strength of the reaction material in contact with water continued to decrease as the polynorbornene composition ratio decreased. The strength of the reaction material in contact with TCE and TPH increased as the polynorbornene composition ratio decreased from 30% to 21%, and then decreased. In other words, the optimal composition ratio of the reactive material should be applied considering the strength due to contact with pollutants according to the stress conditions occurring in the ground.

Evaluation of Adhesive Performance of Surface Finishing Material with Primer Based on Silane (실란계 프라이머를 활용한 바닥 마감재 부착성능 평가)

  • Jeong, Gwon-Young;Youn, Da Ae;Jang, Seok-Joon;Kil, Bae-Su;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.39-46
    • /
    • 2017
  • The experimental research was conducted to evaluate the adhesive performance of surface finishing material with primer based on silane(primer). For this purpose, concrete specimens with compressive strength of 18, 30, 50 MPa were made and cured in water condition ($20{\pm}2^{\circ}C$) for 28 days. A primer was applied on the age of 28 days and evaluated according to based on the curing age of the surface finishing material. Moreover, the mortar specimen also made and tested as per KS F 4937 for compared with concrete-based test results. Test results indicated that the adhesive strength of specimens with primer exhibit similar than that of specimens without primer. Also, the adhesive performance improved with increasing in curing age and compressive strength. The correlation between compressive and adhesive strength of mortar and concrete specimens showed similar trend. It was noted that there is no significant effects of primer on adhesive performance of surface finishing material, thus use of primer has superior potential for solving durability problem of concrete slab surface.

Evaluation Study on the Mechanical and Thermal Properties of High Strength Structural Steel at High Temperature (고강도 구조용 강재의 고온물성 평가연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.72-79
    • /
    • 2013
  • Recently, building constructions have been developed toward high-rise, long span, and multi-complexed using the high strength materials, optimized section. But the structural behavior of steel structural members built with a high strength steel at fire condition is not clarified because of lacking of information of related references such as mechanical and thermal properties at high temperature situation. In this paper, to evaluate the structural stability of member or frame of steel framed building at fire situation through the engineering method, the mechanical and thermal experimental coupon tests have conducted at various high temperatures and the comparison to those of ordinary strength steels were done.