• Title/Summary/Keyword: 강도발현 성상

Search Result 29, Processing Time 0.032 seconds

Development of Early-Strength of High-Strength Concrete According to Curing Temperature for Application of System Form (시스템 거푸집 적용을 위한 고강도 콘크리트의 양생온도별 조기강도 발현성상)

  • 김무한;이승훈;강석표;길배수;주지현
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.536-543
    • /
    • 2001
  • Nowadays, with high-stoned and large-sized of structures, high-strength concrete is applicable to various methods. When high-strength concrete is used jointly with system form, seizing on the development of compressive strength at early age is very important in aspect of construction process. Because system form is stripped more faster than ordinary form. But, we have little data of compressive strength before system-form is stripped, and it isn't yet established that decision criterion of the time when system-form is stripped. So this paper deals with the development of compressive strength at early age before system-form is stripped. In this study, the experimental results indicate the boundary of curing temperature and mixing factor that is able to get needful early-strength in the application of slip-form method, and curing temperature must be kept over 15 degrees in winter season.

Study on the Strength Development of Fly ash Replace Concrete by a In-situ Temperature System (온도추종 양생 장치에 의한 플라이애쉬 치환 콘크리트의 강도 발현 성상)

  • Lee, Gun-Cheol;Yoon, seung-joe;Lee, Gun-Young;Choi, Jung-Gu;Kim, Kyoung-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.126-127
    • /
    • 2014
  • At construction sites, due to the reason of inconvenience and difficulties of producing and using curing equipment and when it comes to measuring compression strength of the actual structure, strength of structure concrete according to general standards which are suggested in concrete standard specification are assessed. However, this method does not consider various variables of the sites such as kinds concretes and sizes of frame works so that it is not easy to measure proper curing period and strength. Thus, this study reviews description of strength development according to In-situ temperature system and analyzes and compares properties of strength development of the existing curing methods such as sealing curing so that it provides basic materials for period of removal of molds.

  • PDF

An Experimental Study on the Strength Development of High Strength Concrete in Various Curing Conditions at an Early-age (초기 양생조건에 따른 고강도 콘크리트의 강도발현에 관한 실험적 연구)

  • Kwon, Yeong-Ho;Lee, Tea-Wang
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • This study is experimentally investigated the effects of various steam curing parameters on the early-age compressive strength development of high strength concrete (over 40 MPa) in the precast plant production. High strength concrete are used only ordinary portland cement (type I) and water-cement ratio selected 3cases (25%, 35% and 45%). Also, steam curing parameters are as followings ; (1) Preset period 2cases (3 hours and 6 hours) (2) Maximum curing temperature 3cases ($45^{\circ}C$, $55^{\circ}C$ and $65^{\circ}C$) (3) Maintenance time of curing temperature 3cases (4 hours, 6 hours and 8 hours) (4) Maximum rate of heating and cooling $15^{\circ}C$/hr. Initial setting time and adiabatic temperature rising ratio of these concrete according to water-cement ratio are tested before main tests and examined the compressive strength development for the steam curing parameters. Also compressive strength are compared with optimum steam curing condition and standard curing at test ages. As test results, the optimum steam curing conditions for high strength concrete(over 40 MPa) are as followings. (1) Preset period ; over initial setting time of concrete (2) Maximum curing temperature ; bellow $55^{\circ}C$ (3) Maintenance time of curing temperature ; bellow 6hours. Also strength development of steam curing concrete show in the reversed strength at 28 days. It is to propose an efficient steam curing condition for high strength concrete in the precast method.

Properties of Strength Development of Concrete Using High Fineness Cement and Blast Furnace Slag (고분말도 시멘트와 고로슬래그 미분말을 사용한 콘크리트의 강도발현 성상)

  • Kim, Han-Sic;Ha, Jung-Soo;Lee, Young-Do
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.197-198
    • /
    • 2018
  • As part of the effort to shorten the construction period, this study examined the strength expression characteristics at the early age of concrete using high fineness cement and blast furnace slag. accordingly to provide a basic data on how to solve the problem that the initial strength is lowered.

  • PDF

Shrinkage Properties of Blast Furnance Slag Cement Mortar by using Frost-Resistant Accelerator (내한촉진제를 사용한 고로시멘트 모르타르의 수축성상)

  • Choi, Hyeong-Gil;Lee, Jun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • In this study, the effects of blast furnance slag cement and frost-resistant accelerator on shrinkage properties and shrinkage properties of mortar were examined. As a result, the addition of the frost-resistant accelerator to both OPC and BB has a small effect on the flash properties of mortar and the compressive strength increases from the early ages. In addition, when a frost-resistant accelerator is used in excess of the standard usage amount, it is necessary to examine the relationship of the expansion behavior at the early age, especially, between the compressive strength development and the expansion property. And it was confirmed that the addition of the frost-resistant accelerator tended to increase the shrinkage of mortar using the OPC and BB. With the addition of the frost-resistant accelerator, the amount of pores with a diameter of under the 30nm, especially, the amount of pores with a diameter of 20 to 30nm and the amount of pores with an ink-bottle decrease, and the shrinkage increases. And it is considered that a change in the amount this range of pores has a large effect on the shrinkage property.

A Study on the Strength at an Early Stage of the Compound Mixed into Polycarboxylate (Polycarboxylate에 혼합 사용된 혼화제의 조기강도 발현성상에 관한 연구)

  • Ryu, Hyun-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.175-181
    • /
    • 2009
  • In this research, experiments were conducted to find out whether polycarboxylate could be used as a crude steel admixture for practical work, depending on the change in the replacement level of the compound mixed into polycarboxylate. Its fluidity was satisfactory, its airspace was a bit smaller than the KS standard, and its unit volume weight was proven to meet the standard. The amount of bleeding was smallest in B2, and in terms of the solidification time, the first and the last solidification was faster in A1, B1, and C1. With regard to the compressive strength in early days as acharacteristic of hardened concrete, all addition rates of 7-day C2 displayed the highest strength value, among which the addition rate of 1.3% had the biggest strength performance tendency. The seal strength also showed the strength performance rate which was about one tenth as big as that of the compressive strength. The length change rate resulting from dryness and contraction was proven to be good, and once the appropriate AE air entraining agent is used, it is evaluated to be a very useful and practical compound out in the field.

Properties of Engineering and Durability Concrete with Fly-ash and Blast Furnace Slag in Normal Strength Level (플라이애시 및 고로슬래그 첨가율에 따른 일반강도영역 콘크리트의 공학적 특성 및 내구성)

  • Kim, Gyu-Yong;Shin, Kyoung-Su;Lim, Chang-Hyuk;Nam, Jeong-Soo;Kim, Moo-Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • Recently, reducing usage of cement and using by-product of industry such as blast furnace slag and fly-ash have been increased to reduce $CO_2$ gas emission. That apply to construction. As a result, reduction of environmental stress and recycling of resources are expected. In this study, as basic study to the reuse of resources and reduce Environmental Load, comparing and analyzing hardening characteristics and durability as using the blast furnace slag and fly-ash, examining concrete characteristics substituted the three elements for the blast furnace slag and fly-ash and evaluating the relationship as binder. Through this, it want to provide the basic data for mass utilization. Blast furnace slag powder and replaced at fly-ash compressive strength of concrete in the strength of the initial seven days material age lower level of expression significantly compared to the concrete, but, 28 days after the similar or higher compressive strength than the concrete expression of the was. In addition, the reserves replacement of blast furnace slag powder salt injury increasing resistance are seen improvements, according to the conventional blast furnace slag powder study by the chloride ions on the surface of the concrete are improved being fixation salt injury resistance is considered.

  • PDF

Properties of Polymer Cement Mortars under Combined Cures (복합양생에 의한 폴리머 시멘트 모르타르의 성질)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.667-675
    • /
    • 2006
  • Concrete is much more easily damaged by various parameters than by the only one and performance reducing mechanism grows more complicated in that condition. In addition, the factors which really act in concrete structure tend to be activated in turn and the degradation of concrete is very rapidly progressed. The purpose of this study is to evaluate the properties of polymer cement mortars under combined cures. The polymer cement mortars are prepared with various polymer types, polymer-cement ratios and cement-fine aggregate ratio, and tested for compressive and flexural strengths, accelerated carbonation, chloride ion penetration and acid resistance test, and freezing-thawing test. The properties of polymer cement mortars under combined cures is discussed. From the test results, polymer cement mortars have superior strengths compared with plain cement mortar under combined cures. The strengths of polymer cement mortars are markedly increased at curing condition II and V, however strengths are not improved at curing condition I and IV irregardless of polymer types. The carbonation and chloride ion penetration depths of polymer cement mortars tend to decrease in curing conditions, III-C, IV-B, V-A order, and decrease with increasing polymer cement ratios. It is concluded that polymer cement ratio of 10 to 15% are considered optimum for the preparation of such polymer cement mortars.

Fresh and Hardened Properties of Structural Lightweight Concrete according to the Physical Properties of Artificial Lightweight Aggregates (인공경량골재의 물리적 특성에 따른 구조용 경량콘크리트의 프레쉬 및 경화성상)

  • Shin, Jae-Kyung;Choi, Jin-Man;Jeong, Yong;Kim, Yang-Bea;Yoon, Sang-Chun;Jee, Nam-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.377-380
    • /
    • 2008
  • Structural lightweight concrete will reduced total loads of supporting sections and foundations in archtectural and civil structures. So, the lightweight concrete can use widely for various purpose in the archtectural and civil structures. However, the performance of lightweight concrete is essentially dependent of properties of used lightweight aggregates. So, in this paper were examined the fresh and hardened properties of lightweight concrete that are used 3types of the differences properties of lightweight aggregates from lower water-ratio to higher water-ratio of concrete mixing regions. Lightweight concrete was somewhat exhibit larger slump loss than ordinary concrete. Also, the development of compressive strength was lower than ordinary concrete, however it was not showed a marked difference. According to types of lightweight aggregates, the case of synthetic lightweight aggregate are highest performance in fresh and hardened concrete, but it is should be to evaluate the structural performance testing as anchoring and bond strength with reinforcing steel bars.

  • PDF

Strength Properties of SBR-Modified Concretes Using Ground Granulated Blast-Furnace Slag (고로슬래그 미분말을 이용한 SBR혼입 폴리머 시멘트 콘크리트의 강도특성)

  • ;;Yoshihiko Ohama
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.315-320
    • /
    • 2002
  • The effects of slag content and polymer-binder ratio on the strength properties of the polymer-modified concretes using ground granulated blast-furnace slag and a styrene-butadiene rubber (SBR) latex are examined. As a result, the compressive, tensile and flexural strengths of the SBR-modified concretes using slag increase with increasing polymer-binder ratio and slag content, and maximized at a slag content of 40 %. In particular, the SBR-modified concretes with a slag content of 40 % provide approximately two times higher tensile and flexural strengths than unmodified concretes. Such high strength development is attributed to the high tensile strength of SBR polymer and the improved bond between cement hydrates and aggregates because of the addition of SBR latex.