• Title/Summary/Keyword: 강도계수

Search Result 2,654, Processing Time 0.024 seconds

Effect of Recycled Coarse Aggregate on Compressive Strength and Mechanical Properties of Concrete (순환굵은골재가 콘크리트의 압축강도 및 역학적 특성에 미치는 영향)

  • Yang, In-Hwan;Jeong, Joon-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.105-113
    • /
    • 2016
  • Most studies on mechanical properties of concrete with recycled aggregate was focused on the concrete with compressive strength of less than 40 MPa. Therefore, this paper concerns the compressive strength and mechanical properties of concrete with compressive strength of greater than 40 MPa containing recycled coarse aggregate (RCA). The experimental parameters were compressive strength level and replacement ratio of RCA. Compressive strength level was 45 and 60 MPa, and replacement ratio of RCA was 30, 50, 70 and 100%. The results of the test were discussed: compressive strength, elastic modulus, split tensile strength and modulus of rupture. Test results of elastic modulus were compared to the design code predictions. The design code predictions for elastic modulus overestimated the experimental results. However, the design code predictions for modulus of rupture were generally in agreement with the measured values.

SIF Calibration of Iosipescu Beam Using Stiffness Derivative Method (강성 미분법을 이용한 Iosipescu Beam의 강도계수 분석)

  • Heo, Gwang-Hee;Yoon, Il-Ro
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.2
    • /
    • pp.95-105
    • /
    • 1997
  • Iosipescu Beam은 혼합 모드의 파괴 거동에 관하여 자주 이용되고 있는 보 중에 하나이다. 이 연구의 주요 목적은 Iosipescu 보의 모드 II 파괴계수(SIF)를 수치적 실험을 통하여 결정하는데 있다. 이 특별한 연구의 목적에 맞게 강도계수를 구하기 위하여 강성도법이 유도되고, 다양한 종류의 Iosipescu 보의 분석이 이루어진다. 수치적 실험을 위해 요구되어지는 정해를 얻기 위한 기술이 논의된다. 또한 이 수치 실험을 위하여 필요로 되어지는 Mesh의 기준과 요구되어지는 정해도를 위한 수렴 테스트를 실시한다. 약 500 개의 데이터 세트가 분석되어 결과가 이용하기 쉬운 약산식으로 유도되었다.

  • PDF

Relation between Cone Tip Resistance and Deformation Modulus of Cemented Sand (고결모래의 콘선단저항과 변형계수의 관계)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.53-63
    • /
    • 2008
  • In this study, the cone tip resistances of cemented sand are measured by performing a series of miniature cone penetration tests in large calibration chamber, and the relations with constrained modulus, unconfined compressive strength, and shear strength of cemented sand are suggested. Experimental results show that both the cone tip resistance and constrained modulus of sand increase with increasing cementation effect as well as relative density and confining stress. However, it is observed that the relative density and confining stress have more significant influence on cone tip resistance than constrained modulus of cemented sand. Since the cone penetration into the ground induces the damage of cementation, the cone tip resistance can't properly reflect the cementation effect of sand. An analysis based on the constrained modulus shows that the measured cone tip resistance underestimates the deformation modulus of cemented sand by about $70{\sim}85%$. In addition, this study establishes various relationships among the above soil properties from the regression analysis.

A Study on the Estimation and Application of Failure Coefficients of Rock (암석의 파괴조건계수 평가 및 적용성에 관한 연구)

  • 장명환;양형식
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.103-116
    • /
    • 1998
  • To estimate pure shear strength, 150 sets of triaxial test data were analyzed. The proportional coefficient of shear strength($I_c$) at zero normal stress was nonlinearly decreased as failure coefficient m increases, while the internal friction $\phi_0$ at zero normal stress was nonlinearly increased. The ratio of shear strength $(c/\phi_0)$was inversely proportional to the ratio of the internal friction angles$(\phi/phi_0)$ The shear strength decreased as m increased, while internal friction angle increased. And uniaxial strength was proportional to $c,\phi$ Regression analysis showed that shear strength strongly affects m and $\sigma_c$ The proportional coefficient of shear strength was nonlinearly increased with RMR, while the internal friction angle $(\phi}$was linearly decreased.

  • PDF

Compressive Behavior of Hybrid Steel Fiber Reinforced Ultra-High Performance Concrete (하이브리드 강섬유 보강 초고성능 콘크리트의 압축거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.213-221
    • /
    • 2016
  • Uniaxial compression tests for ultra-high performance hybrid steel fiber reinforced concrete (UHPC) were performed to evaluate the compressive behavior of UHPC. The UHPC for testing contains hybrid steel fibers with a predetermined ratio using a length of 19 mm and 16 mm straight typed steel fibers. Test parameter was determined as a fiber volume ratio to investigate the effect of fiber volume ratio on the strength and secant modulus of elasticity. Test results showed that the compressive strength and elastic modulus of UHPC increased with increasing the fiber volume ratio. Based on the test results, the compressive strength and modulus of elasticity equations were proposed as function of the compressive strength of unreinforced and fiber reinforced UHPC, respectively. The simplified equations for predicting the mechanical properties of the UHPC were a good agreement with the test data. The proposed equations are expected to be applied to the SFRC and UHPC with steel fibers.

A Proposal of Elastic Modulus Equation for High-Strength and Ultra-High-Strength Concrete (국내의 실험자료를 이용한 고강도 및 초고강도 콘크리트의 탄성계수식 제안)

  • 장일영;박훈규;윤영수
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.213-222
    • /
    • 1996
  • This paper presents the improved elastic modulus equation more appropriate to predict the modulus of elasticity of structural elements designed and made by high- and ultra high-strength concrete under domestic situation in Korea. To justify and assess the proposed elastic modulus equation, more than 400 laboratory test data domestically available in the literature and having the range of 400 to 1.000kg/$\textrm{cm}^2$ in concrete compressive strength were collected and analyzed statistically. Comparison of the proposed elastic modulus equation with the previously suggested equations in the ACI363R. CEB-FIP, NS3473 and New-RC were also presented to demonstrate the applicability to practice.

Comparative Evaluation of Formulas of Strength Reduction Factors for the Generation of an Inelastic Demand Spectrum (비탄성요구스펙트럼의 작성을 위한 강도감소계수 공식의 비교 평가)

  • Cho, Sung-Gook;Park, Woong-Ki;Joe, Yang-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.33-44
    • /
    • 2011
  • The shape of an inelastic demand spectrum may have a major impact on the seismic evaluation results of a structure. The inelastic demand spectrum could be obtained by scaling down from the elastic response spectrum by applying the strength reduction factor (SRF). This study has investigated formulas for SRFs that were suggested by numerous previous studies. This paper compares their characteristics, including the shapes of the curves of the SRFs and the inelastic demand spectra that were produced by applying the various formulas for SRFs. The mean curve was computed from the SRF curves generated by the various formulas. This study derives a new formula for the SRF curve through regression analysis. From the comparative study, it is shown that the proposed formula for the SRF can generate the mean curve of the inelastic demand spectra which have been previously suggested by others.

Effects of Strength Reduction Factors for Capacity Spectrum Analysis of Bridge Structures using Inelastic Demand Spectrum (비탄성 요구도 스펙트럼을 이용한 교량구조물의 역량스펙트럼 해석에 대한 강도감소계수의 영향)

  • Song, Jong-Keol;Jin, He-Shou;Jang, Dong-Hui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.25-37
    • /
    • 2008
  • The capacity spectrum method (CSM) is a simple and graphical seismic analysis procedure. Originally, it has been developed for buildings, but now its applicability has been extended to bridge structures. It is based on the capacity curve estimated by pushover analysis and demand spectrum reduced from linear elastic design spectrum by using effective damping or strength reduction factor. In this paper, the inelastic demand spectrum as the reduced demand spectrum is calculated from the linear elastic design spectrum by using the several formulas for the strength reduction factor. The effects of the strength reduction factor for the capacity spectrum analysis are evaluated for 3 types of symmetric and asymmetric bridge structures. To investigate an accuracy of the CSM which several formulas for strength reduction factor were applied, the maximum displacements estimated by the CSM are compared with the results obtained by nonlinear time history analysis for 8 artificially generated earthquakes. The maximum displacements estimated by the CSM using the SJ formula among the several strength reduction factors provide the most accurate agreement with those calculated by the inelastic time history analysis.

Micromechanical Computational Analysis for the Prediction of Failure Strength of Porous Composites (다공성 복합재의 파손 강도 예측을 위한 미시역학 전산 해석)

  • Yang, Dae Gyu;Shin, Eui Sup
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.66-72
    • /
    • 2016
  • Porosity in polymer matrix composites increases rapidly during thermochemical decomposition at high temperatures. The generation of pores reduces elastic moduli and failure strengths of composite materials, and gas pressures in internal pores influence thermomechanical behaviors. In this paper, micromechanical finite element analysis is carried out by using two-dimensional representative volume elements for unidirectionally fiber-reinforced composites with porous matrix. According to the state of the pores, effective elastic moduli, poroelastic parameters and failure strengths of the overall composites are investigated in detail. In particular, it is confirmed that the failure strengths in the transvers and through-thickness directions are predicted much more weakly than the strength of nonpored matrix, and decrease consistently as the porosity of matrix increases.

Evaluation on the Mechanical Properties of Multi-Functional Asphalt Pavements for Surface Course (다기능 표층용 아스팔트 혼합물의 역학적 특성 평가)

  • Lee, Kwan-Ho;Ham, Sang-Min;Kim, Seong-Kyum;Lee, Byung-Sik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.292-295
    • /
    • 2011
  • 본 논문에서는 배수성(저소음)포장을 포함하는 2-Layer 아스팔트 포장의 상부층과 하부층의 역학적인 특성을 평가하는데 목적이 있다. 연구 방법으로는 슈퍼페이브 배합설계로 2-Layer 아스팔트 포장의 상 하부층 시편을 제작하였으며, 시편 상부층의 최대공칭치수는 4.75mm이고 하부층의 최대공칭치수는 13mm이다. 이 시편에 대한 기본 물성 시험 실시 후 마샬 안정도 시험에 대한 안정도와 흐름값을 평가하였다. 그리고 상부층과 하부층의 자유단 공진주 시험을 통해 탄성계수(E)를 측정하였고, 비파괴 시험법인 슈미트해머(Schmidt hammer)를 이용해 반발경도를 측정한 후 강도를 추정하였다. 또한 일축압축시험으로 측정된 압축강도로 탄성계수($E_{50}$)를 계산하였다. 마지막으로 각각의 역학적 시험을 통해 얻어진 결과값으로 강도(qu)와 탄성계수 ($E_{50}$)의 상관관계와 추정식으로 구한 강도와 일축압축강도 시험으로 얻어진 강도와의 상관관계를 분석하였고, 자유단 공진주 시험의 탄성계수(E)값과 일축압축시험의 결과로 얻어진 탄성계수($E_{50}$)의 상관관계를 분석하였다.

  • PDF