• Title/Summary/Keyword: 강내 탄도

Search Result 37, Processing Time 0.024 seconds

Study on Properties of Interior Ballistics According to Solid Propellant Grain Configuration (고체추진제 형상에 따른 강내탄도의 특성 연구)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Kim, In-Joo;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.159-162
    • /
    • 2009
  • Using the numerical code for the interior ballistics, the performance of the interior ballistics with the characteristic of the configuration of the solid propellant has been investigated. In existing research, only ball type solid propellant is considered but at this research, cylinder and single slot type solid propellants are considered. Definite the change of performance of the interior ballistics according to specific surface area.

  • PDF

Development of Numerical Code for Interior Ballistics and Analysis of Two-phase Flow according to Drag Models (강내탄도 전산해석 코드 개발과 항력 모델에 따른 이상유동 분석)

  • Sung, Hyung-Gun;Jang, Jin-Sung;Yoo, Seung-Young;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.38-46
    • /
    • 2011
  • In order to simulate the ignition-gas injection in the interior ballistics, a two-dimensional analytic code for two-phase flows has been developed. The Eulerian-Lagrangian approach and the low-dissipation simple high-resolution upwind scheme(LSHUS) have been adopted in the numerical code for the propellant combustion of the gun propelling charges. The ghost-cell extrapolation method has been used for the moving boundary in the chamber with the projectile movement. The calculation results of the developed code have been compared and verified through those of the dimensionless IBHVG2 code and the previous one-dimensional code. In comparison with the two-phase flows according to the drag models, the numerical analysis of the muzzle velocity has been affected by the drag model.

Study on Fundamental Technique for Numerical Analysis of Interior Ballistics (강내탄도의 전산해석 기초 기법의 연구)

  • Sung, Hyung-Gun;Park, Sol;Hong, Gi-Cheol;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.12-20
    • /
    • 2008
  • The efficient plan and numerical methods for development of the interior ballistics code have been investigated. The schemes of the numerical code for the moving boundary with the projectile movement have been compared and verified through the free piston motion problem. The combustion of solid propellants and the pressure gradient in the chamber by the porosity effect have been predicted based on the numerical calculation of the initial combustion of the interior ballistics. Computerization techniques of the fundamental schemes and plans for development of the numerical analysis code for the interior ballistics have been obtained.

Analysis of Elements Influencing on Performance of Interior Ballistics (강내탄도의 성능 영향 요소 분석)

  • Sung, Hyung-Gun;Yoo, Seung-Young;Choi, Dong-Whan;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.228-236
    • /
    • 2011
  • The analysis of the performance and the internal flow according to various numerical models used for the interior ballistics has been conducted. The internal flow has been mainly affected by the drag model. As results, oscillations of the pressure differences between the breech and the shot base has been reduced with a deceased drag of the propellant. The major performance of the interior ballistics has no relation to the models using Nusselt number for heat transfer coefficient. The negative pressure difference without the heat transfer of the propellant has not been shown.

  • PDF

Study on Performance Analysis of Interior Ballistics According to ETC(Electrothermal chemical) Effect (ETC 효과를 고려한 강내탄도의 성능해석 연구)

  • Sung, Hyung-Gun;Jang, Jin-Sung;Lee, Sang-Bok;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.145-148
    • /
    • 2009
  • A study on ETC(Electrothermal chemical) Guns has been conducted. The existing code of the numerical analysis for the interior ballistics has been extended for ETC Guns. Using this code, the performance analysis of interior ballistics according to the injection patterns of the plasma energy has been fulfilled.

  • PDF

Numerical Analysis of Interior Ballistics for Ignition Injection (점화제 주입에 따른 강내탄도 수치해석)

  • Sung, Hyung-Gun;Jang, Jin-Sung;Kim, In-Joo;Choi, Dong-Whan;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.211-214
    • /
    • 2009
  • Using the numerical code for the interior ballistics, the performance of the interior ballistics with the characteristic of the ignition injection has been investigated. When the maximum position of ignition injection is near the base, the pressure distribution at the chamber of the interior ballistics was uniform and the final projectile velocity is increased.

  • PDF

Comparative Study of Propellant Modeling in Chamber of Interior Ballistic (강내탄도의 약실 내 추진제 모델링 비교연구)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.668-671
    • /
    • 2010
  • Comparative study on propellant modeling has been investigated using a non-dimensional method and an one-dimensional method. The propellant location in the chamber can not be described by the non-dimensional method. It is, however, possible for the one-dimensional method to describe. Therefore, the analysis of the interior ballistics according to the propellant arrangements has been performed by the one-dimensional method. The negative differential pressure in the chamber could be predicted and the necessity of the one-dimensional modeling for the analysis of the interior ballistics has been confirmed.

  • PDF

Development of Numerical Model for Igniter and Study on Initial Ignition of Interior Ballistics (강내탄도의 점화기 해석 모델 개발 및 초기 점화 연구)

  • Sung, Hyung-Gun;Jang, Jin-Sung;Choi, Dong-Whan;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.953-961
    • /
    • 2011
  • A numerical model of the igniter for the interior ballistics has been developed combining the lumped parameter model with the theoretical equation of the orifice. With the developed model of the igniter, the numerical study on characteristics of the interior ballistics according to the igniter configuration in terms of the igniter length, the side hole diameter, and the distribution of side holes has been conducted. As results of the calculation of the pressure difference between the breech and shot base, the low frequency oscillations have been influenced by the igniter length, while the high frequency oscillations have been affected by the side hole diameter and the distribution of side holes.

  • PDF

Analysis of Elements Influencing on Performance of Interior Ballistics (강내탄도의 성능 영향 요소 분석)

  • Sung, Hyung-Gun;Yoo, Seung-Young;Lee, Sang-Bok;Choi, Dong-Whan;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.16-24
    • /
    • 2013
  • The analysis of performance and internal flow according to various numerical models for interior ballistics has been conducted. The initial flow has been mainly affected by the drag model of propellants and their drag degradation reduces oscillations of differential pressure between the breech and the shot base. Models of Nusselt number haven't influenced the major performance of interior ballistics. The negative differential pressure isn't generated in the case without the heat transfer of propellants.

Development of Numerical Model for Igniter and Study on Initial Ignition of Interior Ballistics (강내탄도의 점화기 해석 모델 개발 및 초기 점화 연구)

  • Sung, Hyung-Gun;Jang, Jin-Sung;Lee, Sang-Bok;Choi, Dong-Whan;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.105-113
    • /
    • 2013
  • A numerical model of the igniter for the interior ballistics has been developed by combining lumped parameter model with the theoretical equation of orifice. With the developed model of the igniter, the numerical study on characteristics of the interior ballistics has been conducted according to the igniter configuration in terms of igniter length, side hole diameter, and distribution of side holes. As results of the calculation of the pressure difference between the breech and shot base, the low-cycle oscillations have been influenced by the igniter length, while the high-cycle oscillations have been affected by the side hole diameter and the distribution of side holes.