• Title/Summary/Keyword: 강교

Search Result 66, Processing Time 0.032 seconds

The Effect of Blast Cleaning for Steel Bridge Painting on Fatigue Behavior of Out-of-Plane Gusset Welded Joints (강교 도장용 블라스트 처리가 면외거셋 용접이음의 피로거동에 미치는 영향)

  • Kim, In Tae;Le, Van Phuoc Nhan;Kim, Kwang Jin;Lee, Dong Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.583-590
    • /
    • 2008
  • Blasting has been applied in newly-built steel structures for cleaning forged surfaces and increasing the adhesive property of applied painting systems. However, the effect of the blast cleaning on fatigue behavior of welded joints is not clear. In this paper, fatigue tests were carried out on out-of-plane gusset welded joints and the effect of the blast cleaning on the fatigue behavior was studied. The curvature radius at the weld toe of the surface-treated specimens by using the blast method is larger than that of as-welded specimens. By the blast cleaning compressive residual stresses were induced into weld toes. The experimental results showed that the fatigue life of surface-treated specimens is longer than that of as-welded specimens, even though the fatigue life of surface-treated specimens and that of as-welded specimens are not clearly different in the high stress range. About a 160% increase in fatigue limit could be realized by using blast cleaning.

Damage Estimation of Steel Bridge Members by Fatigue Vulnerability Curves Considering Deterioration due to Corrosion with Time (시간에 따른 부식열화가 고려된 피로취약도 곡선을 이용한 강교의 손상 평가)

  • Kim, Hyo-Jin;Lee, Hyeong-Cheol;Jun, Suk-Ky;Lee, Sang-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.1-12
    • /
    • 2007
  • A method for assessing fatigue vulnerability of steel bridge members considering corrosion and truck traffic variation with time is proposed to evaluate the reduction of fatigue strength in steel bridge members. A fatigue limit state function including corrosion and traffic variation effect is established. The interaction between the average corrosion depth and the fatigue strength reduction factor is applied to the limit state function as the reduction term of strength. Three types of truck traffic change is modeled for representing real traffic change trend. Monte-Carlo simulation method is used for reliability analysis which provides the data to obtain fatigue vulnerability curves. The estimation method proposed was verified by comparing with the results of reference study and applying to the steel bridges in service.

An Extended Data Model based on the IFC for Representing Detailed Design Information of Steel Bridge Members (강교 부재의 상세 설계정보 표현을 위한 IFC기반의 데이터 모델 확장)

  • Lee, Jin-Hoon;Lee, Ji-Hoon;Kim, Hyo-Jin;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.253-263
    • /
    • 2008
  • Extension of IFC data model for steel bridge members is proposed to represent detailed design information. First of all, the design data items and their representation method are classified by analyzing primary references such as design specification, structural calculation documents and shop drawings. Some of the classified items are enough to be represented by the existing IFC model. However, the need of additional model is noted to systematically represent the design information for other items such as stiffener, diaphragm, joint system, and shear connector. An inheritance relations and properties for added model are also defined. The application program based on the proposed data model is developed. In the end, by loading the application program on the AutoCAD 2002 program, end-users can input the design information of steel bridge members. The applicability and efficiency of the proposed data model and the program are verified by checking the section area, intervals, and interferences.

Prediction of Lifetime of Steel Bridge Coating on Highway for Effective Maintenance (고속도로 강구조물의 효율적 유지관리를 위한 도막수명예측)

  • Lee, Chan-Young;Cheong, Haimoon;Park, Jin-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.341-347
    • /
    • 2008
  • Among coating systems used for steel bridge coatings on highway such as red lead-pigmented alkyd, chlorinated rubber, waterborne inorganic zinc, inorganic zinc/epoxy/urethane and inorganic zinc/epoxy/fluororesin, evaluation of deterioration degree and prediction of lifetime through regression analysis were carried out for coating systems widely used and grossly degraded. For evaluation of deterioration degree, 75 bridges on highway were selected, and evaluations were carried out according to point offering method regulated by Guideline of maintenance coating for steel bridges used in Korea Expressway Corporation. Lifetime prediction results showed 13.0~13.3 years for the whole nation, 11.8 years for urban and industrial region in the metropolitan area, 13.2 years for rural region except the metropolitan area, 13.5~13.7 years for chlorinated rubber coating systems, and 12.86 years for red lead-pigmented alkyd systems. For prediction of the rest life of coating, we tried to execute parallel translations of standard deterioration curve to current life and deterioration degree for both x and y axes, and it was thought that parallel translation for x axis corresponded to deterioration aspects in actual environment. Maximum and minimum equations were derived from standard deterioration equation by adding and subtracting error values deduced in regression analysis to/from each coefficient in order to establish maintenance coating criteria for overall steel bridges on highway. Whole domain was divided into 8 parts in order to predict the rest life of coating and optimum time of maintenance coating, and maintenance coating criteria for each 8 domains were presented.

Work Breakdown Structure(WBS) based on the Steel Box Girder Production Process Model (강교량 제작 프로세스 모델을 기반으로한 WBS구축)

  • Ha, Seung-Ho;Kim, Seok;Kim, Kyoung-Min;Park, Chan-Hyuk;Kim, Kyong-Ju
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.521-525
    • /
    • 2004
  • The objective of this study is to implement a WBS (Work Breakdown Structure) so as to support efficient information management through the construction process of Steel Box Girder Bridge. To meet this requirement. This study performs the analysis of the business process. Through the work, information flows and information management levels are identified. Information management in each manufacturing process was various in its level. For the efficient information management, skating and utilization in schedule, cost, resource, and quality management, it is recommended to utilize a WBS composed of major work section and element structure of the steel box girder.

  • PDF

Evaluation of Deterioration of Epoxy Primer for Steel Bridge Coating using Image Processing and Electrochemical Impedance Spectroscopy (화상처리 기법과 전기화학적 임피던스 분광법을 이용한 강교 도장용 에폭시 하도 도료의 열화 평가)

  • Lee, Chan Young;Lee, Sang Hun;Park, Jin Hwan
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.53-61
    • /
    • 2009
  • In this study, both evaluations by visual imaging for exterior view of coating and by EIS were executed for epoxy primer coated specimens deteriorated by accelerated test, and comparison and analysis were carried out for 2 evaluation methods. In the comparison between total damaged area ratio acquired by image processing method and deterioration point, higher deterioration points were appeared for rusted specimens than for non-rusted specimens. It is attributed that deterioration point per unit area ratio given for rust is higher than for peeling. In the comparison between total damaged area ratio and EIS result, impedance of coating was largely decreased as about TEX>$10^4{\Omega}{\cdot}cm^2$ or less when rust area ratio is more than about 0.1%, and blistering area ratio is more than about 3%. Charge transfer resistance ($R_{ct}$) and double layer capacitance ($C_{dl}$) values were appeared for all specimens except 2 ones, which shows that water is accumulated and steel substrate is corroded at coated film-steel interface. In the comparison between deterioration point and EIS result, more than 10 points as deterioration point were given for specimens of below $10^6{\Omega}{\cdot}cm^2$ of impedance at low frequency. For specimens deteriorated by NORSOK cyclic test, impedance was lowest of all, though deterioration point was not high. It is thought to be attributed that coating system and accelerated deterioration condition of cyclic tested specimens were different from those of main specimens. From the result, it is thought that coating resistance can be relatively more decreased than deterioration degree estimated from exterior view under more severe corrosion environment or in the present of more complex deterioration factors.

Life-Cycle Cost-Effective Optimum Design of Steel Bridges Considering Environmental Stressors (환경영향인자를 고려한 강교의 생애주기비용 최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.227-241
    • /
    • 2005
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology for steel bridges considering the long-term effect of environmental stressors such as corrosion and heavy truck traffics on bridge reliability. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost, and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure, which depends upon the prior and updated load and resistance histories, should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model, which takes into consideration corrosion initiation, corrosion rate, and repainting effect, are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40m+50m+40m=130m). Various sensitivity analyses are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the volume of truck traffic significantly influence the LCC-effective optimum design of steel bridges. Thus, these conditions should be considered as crucial parameters for the optimum LCC-effective design.