• Title/Summary/Keyword: 강건한 특징점

Search Result 76, Processing Time 0.023 seconds

Automatic Face Region Detection and Tracking for Robustness in Rotation using the Estimation Function (평가 함수를 사용하여 회전에 강건한 자동 얼굴 영역 검출과 추적)

  • Kim, Ki-Sang;Kim, Gye-Young;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, we proposed automatic face detection and tracking which is robustness in rotation. To detect a face image in complicated background and various illuminating conditions, we used face skin color detection. we used Harris corner detector for extract facial feature points. After that, we need to track these feature points. In traditional method, Lucas-Kanade feature tracker doesn't delete useless feature points by occlusion in current scene (face rotation or out of camera). So we proposed the estimation function, which delete useless feature points. The method of delete useless feature points is estimation value at each pyramidal level. When the face was occlusion, we deleted these feature points. This can be robustness to face rotation and out of camera. In experimental results, we assess that using estimation function is better than traditional feature tracker.

Inlier selection and Database Redundancy Reducing Method in Urban Environment (도시 영상에서의 Inlier 선택과 Database Redundancy 감소 기법)

  • Ahn, Ha-eun;Yoo, Jisang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.29-32
    • /
    • 2016
  • 특징점 기반 건물인식 시스템에서는 강건한 특징점을 추출하는 것이 인식률 향상에 바로 직결되는 중요한 요소이다. 영상에서 특징점들이 너무 많이 추출되는 경우 인식이나 학습단계에서의 알고리즘 수행 시간을 증가시키는 원인이 된다. 또환 중요하지 않은 특징점(배경이나 가려짐 영역, 기타 객체에서 추출된 특징점)이나 조명 변화에 민감한 영역에서 임의로(arbitrarily) 추출된 특징점은 인식률을 저하시키는 문제를 발생시킨다. 특히 도시환경에서 촬영된 영상의 특징점을 추출할 때 이러한 문제 현상들이 빈번하게 발생한다. 본 논문에서는 이러한 문제를 해결하고자 multi-view 영상에서 건물의 homography를 기반으로 정확히 정합된 특징점인 inlier만을 선택하는 알고리즘을 제안한다. Inlier로 분류된 특징점들은 건물 인식 시스템을 구성하기 위해 사용되고 조명 변화에 민감한 영역에서 임의로 추출된 특징점들은 영역 기반 특징을 추출하여 건물 인식 시스템의 인식률을 높인다. 또한 이를 이용하여 인식하고자 하는 건물과의 상관관계가 적은 잉여 영상들을 DB에서 제거하는 방법도 제안한다. 실험을 통하여 제안하는 기법의 우수성을 보였다.

  • PDF

Robust 2D Feature Tracking in Long Video Sequences (긴 비디오 프레임들에서의 강건한 2차원 특징점 추적)

  • Yoon, Jong-Hyun;Park, Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.473-480
    • /
    • 2007
  • Feature tracking in video frame sequences has suffered from the instability and the frequent failure of feature matching between two successive frames. In this paper, we propose a robust 2D feature tracking method that is stable to long video sequences. To improve the stability of feature tracking, we predict the spatial movement in the current image frame using the state variables. The predicted current movement is used for the initialization of the search window. By computing the feature similarities in the search window, we refine the current feature positions. Then, the current feature states are updated. This tracking process is repeated for each input frame. To reduce false matches, the outlier rejection stage is also introduced. Experimental results from real video sequences showed that the proposed method performs stable feature tracking for long frame sequences.

Object Recognition utilizing Complementary Feature-point-based descriptor containing color information (컬러 정보를 포함하는 보완적 특징점 기반 기술자를 활용한 객체인식)

  • Jang, Young-Kyoon;Kim, Ju-Whan;Moon, Seung-Geon;Nam, Tek-Jin;Kwon, Dong-Soo;Woo, Woon-Tack
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.341-343
    • /
    • 2012
  • 본 논문에서는 기존의 특징점 기반 객체 인식 방법의 확장으로 보완적 특징점 기반의 컬러 정보를 포함하는 기술자를 활용하는 객체 인식 방법을 제안한다. 제안하는 방법은 무늬가 적은 객체에서도 에지의 위치를 샘플링함으로써 보완적 특징점을 생성해 낸다. 그리고 검출된 보완적 특징점으로부터 얻어지는 그레이 값 변화도방향 정보와 컬러 정보를 가지고 있는 기술자를 생성한다. 그리고 생성된 기술자를 객체 단위로 묶어 낼 수 있도록 하는 코드북(Codebook)을 학습함으로써 각 객체를 구분해 낼 수 있는 강건한 히스토그램를 생성한다. 생성된 코드북을 활용함으로써 제안하는 방법은 객체의 크기 및 환경 변화, 3차원 회전의 경우에도 기존의 방법보다 강건하게 인식한다. 실험 결과 제안하는 방법은 75.8% 인식률을 보이는 것을 확인하였다. 이 방법은 증강현실 응용에 정보 제시를 위해 가장 먼저 이루어지는 핵심 기술로써 활용될 수 있다.

Non-Prior Training Active Feature Model-Based Object Tracking for Real-Time Surveillance Systems (실시간 감시 시스템을 위한 사전 무학습 능동 특징점 모델 기반 객체 추적)

  • 김상진;신정호;이성원;백준기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.23-34
    • /
    • 2004
  • In this paper we propose a feature point tracking algorithm using optical flow under non-prior taming active feature model (NPT-AFM). The proposed algorithm mainly focuses on analysis non-rigid objects[1], and provides real-time, robust tracking by NPT-AFM. NPT-AFM algorithm can be divided into two steps: (i) localization of an object-of-interest and (ii) prediction and correction of the object position by utilizing the inter-frame information. The localization step was realized by using a modified Shi-Tomasi's feature tracking algoriam[2] after motion-based segmentation. In the prediction-correction step, given feature points are continuously tracked by using optical flow method[3] and if a feature point cannot be properly tracked, temporal and spatial prediction schemes can be employed for that point until it becomes uncovered again. Feature points inside an object are estimated instead of its shape boundary, and are updated an element of the training set for AFH Experimental results, show that the proposed NPT-AFM-based algerian can robustly track non-rigid objects in real-time.

Multi-Sensor Image Alignment By Statistical Correlation (통계적 Correlation을 이용한 다중센서 영상 정합)

  • 고진신;박영태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.586-588
    • /
    • 2003
  • 현재 많이 연구되는 영상융합(Image fusion)에서는 필히 두 영상의 정합(alignment)이 이루어져야만 수행된다. 각기 다른 특징을 갖는 센서(EO.IR.Radar등)로부터 얻는 영상에서는 각각 다른 특징점 정보를 가지므로, 특징점을 이용한 영상 정합 구현에는 전처리 과정이 매우 복잡하고 까다롭게 이루어져야 한다. 본 논문에서는 Correlation에 대한 통계적 상관 관계를 이용하여. 전처리 과정을 단순하게 수행 하여도 매우 강건한 영상 정합이 이루어지도록 구현 하였다. 또한, 통계적 기법에 적합하도록, 효율적인 전처리 과정을 통해 계산량이 적어 지는 방법을 제안 한다.

  • PDF

The Implementation of Fast 3D Object Tracking using GPU (GPU를 이용한 3차원 고속 물체 추적 알고리즘 구현)

  • Kim, Su-Hyun;Jo, Chang-woo;Jeong, Chang-sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.374-376
    • /
    • 2013
  • 증강 현실(Argument Reality)에 대한 관심이 증가함에 따라 빠르고 강건한 물체 추적(Object Tracking)기법의 개발이 큰 이슈가 되고 있다. 특히, 마커를 사용하지 않는 경우에 추적 속도와 정확도의 정보가 이루어지는 강건한 Markerless 3D 추적 기술은 많은 연구가 이루어지고 있다. 본 논문에서는 SIFT(Scale Invariant Feature Transform)를 이용한 특징점 추출 및 매칭 기법을 통하여 높은 정확도의 물체 추적기법을 제안한다. 그리고 실시간으로 적용하기 어려운 SIFT의 느린 특징점 추출과 매칭 단계를 GPU 기반의 병렬화 작업을 통하여 개선시켜 향상된 추적 속도를 보여준다.

Study of High Speed Image Registration using BLOG (BLOG를 이용한 고속 이미지 정합에 관한 연구)

  • Kim, Jong-Min;Kang, Myung-A
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2478-2484
    • /
    • 2010
  • In this paper, real-time detection methods for Panorama system Key-Points offers. A recent study in PANORAMA system real-time area navigation or DVR to apply such research has recently been actively. The detection of the Key-Point is the most important elements that make up a Panorama system. Not affected by contrast, scale, Orientation must be detected Key-Point. Existing research methods are difficult to use in real-time Because it takes a lot of computation time. Therefore, this paper propose BLOG(BitRate Laplacian Of Gaussian)method for faster time Key-Point Detecting and Through various experiments to detect the Speed, Computation, detection performance is compared against.

A Robust Correspondence Using the Epipolar Geometry from Two Un-calibrated Images (두 장의 비교정된 영상으로부터 에피폴라 기하학을 이용한 강건한 대응점 추출)

  • Yoon, Yong-In;Oh, In-Whan;Doo, Kyoung-Soo;Choi, Jong-Soo;Kim, Jin-Tae;Song, Ho-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.535-541
    • /
    • 2006
  • This paper proposes a robust method to find corresponding points for un-calibrated stereo images by using a classical method based on the epipolar constraints and motion flows. If we detect matching for the only epipolar geometry, the problem is very high. Therefore, in order to nod an initial set of matches, we use the correlation technique and then exploit motion vectors to remove mismatches among matching candidates. Then, the epipolar geometry can be accurately estimated using a veil adapted criterion and computed the fundamental matrix. The proposed algorithm has been widely tested and works remarkably well in various scenes, evenly, with many repetitive patterns. The results show that the proposed algorithm is better than the conventional.

Driving Video Stabilization using Region based Histogram Matching and Linear Regression (영역별 투영 히스토그램 매칭 및 선형 회귀모델 기반의 차량 운행 영상의 안정화 기술 개발)

  • Heo, Yu-Jung;Choi, Min-Kook;Lee, Hyun-Gyu;Lee, Sang-Chul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.28-31
    • /
    • 2014
  • 본 논문에서는 블랙박스 혹은 운전석에 장착된 카메라로부터 얻어진 차량 영상에 대한 영역별 수직 히스토그램 매칭 및 선형 회귀분석 모델(linear regression model)을 활용한 강건한 차량 운행 동영상의 안정화(video stabilization) 기법을 제안한다. 동영상 안정화 기법은 영상의 흔들림 보정뿐 아니라 동영상 내 강건한 특징점 추적 및 매칭을 위한 이전의 전처리 과정으로 적용된다. 일반적으로 촬영 과정에서 많은 떨림이 포함될 수 있는 야외 CCTV 영상이나 손으로 들고(hand-held) 촬영된 동영상에 대한 흔들림 보정 등에 적용되고 있으나 영상 내 특징점이 지속적으로 변하고 영상의 변화 정도가 매우 심한 차량 운행 동영상에서는 적용된 사례가 드물다. 본 연구에서는 일반적인 비디오 안정화 기술이 적용되기 어려운 차량 운행 동영상에 대하여 수직 투영 히스토그램 매칭 및 선형 회귀분석 모델 기반의 안정화 기법을 제안한다. 제안된 기법은 입력영상에 대한 영역별 수직 투영 히스토그램 매칭을 수행하고 선형 회귀모델을 통해 영상에 나타나는 수직 및 회전이동 변환을 선형 근사하여 시간 영역 상의 입력 영상에 대한 안정화를 달성한다. 제안 방법의 검증을 위해 블랙박스로 촬영된 실제 동영상에 동영상 안정화 기술을 적용하였으며, 운행 중 불규칙한 노면으로 인한 영상의 흔들림이 효과적으로 제거되는 것을 확인할 수 있었다.

  • PDF