In this paper, we proposed automatic face detection and tracking which is robustness in rotation. To detect a face image in complicated background and various illuminating conditions, we used face skin color detection. we used Harris corner detector for extract facial feature points. After that, we need to track these feature points. In traditional method, Lucas-Kanade feature tracker doesn't delete useless feature points by occlusion in current scene (face rotation or out of camera). So we proposed the estimation function, which delete useless feature points. The method of delete useless feature points is estimation value at each pyramidal level. When the face was occlusion, we deleted these feature points. This can be robustness to face rotation and out of camera. In experimental results, we assess that using estimation function is better than traditional feature tracker.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.29-32
/
2016
특징점 기반 건물인식 시스템에서는 강건한 특징점을 추출하는 것이 인식률 향상에 바로 직결되는 중요한 요소이다. 영상에서 특징점들이 너무 많이 추출되는 경우 인식이나 학습단계에서의 알고리즘 수행 시간을 증가시키는 원인이 된다. 또환 중요하지 않은 특징점(배경이나 가려짐 영역, 기타 객체에서 추출된 특징점)이나 조명 변화에 민감한 영역에서 임의로(arbitrarily) 추출된 특징점은 인식률을 저하시키는 문제를 발생시킨다. 특히 도시환경에서 촬영된 영상의 특징점을 추출할 때 이러한 문제 현상들이 빈번하게 발생한다. 본 논문에서는 이러한 문제를 해결하고자 multi-view 영상에서 건물의 homography를 기반으로 정확히 정합된 특징점인 inlier만을 선택하는 알고리즘을 제안한다. Inlier로 분류된 특징점들은 건물 인식 시스템을 구성하기 위해 사용되고 조명 변화에 민감한 영역에서 임의로 추출된 특징점들은 영역 기반 특징을 추출하여 건물 인식 시스템의 인식률을 높인다. 또한 이를 이용하여 인식하고자 하는 건물과의 상관관계가 적은 잉여 영상들을 DB에서 제거하는 방법도 제안한다. 실험을 통하여 제안하는 기법의 우수성을 보였다.
Feature tracking in video frame sequences has suffered from the instability and the frequent failure of feature matching between two successive frames. In this paper, we propose a robust 2D feature tracking method that is stable to long video sequences. To improve the stability of feature tracking, we predict the spatial movement in the current image frame using the state variables. The predicted current movement is used for the initialization of the search window. By computing the feature similarities in the search window, we refine the current feature positions. Then, the current feature states are updated. This tracking process is repeated for each input frame. To reduce false matches, the outlier rejection stage is also introduced. Experimental results from real video sequences showed that the proposed method performs stable feature tracking for long frame sequences.
Proceedings of the Korean Information Science Society Conference
/
2012.06c
/
pp.341-343
/
2012
본 논문에서는 기존의 특징점 기반 객체 인식 방법의 확장으로 보완적 특징점 기반의 컬러 정보를 포함하는 기술자를 활용하는 객체 인식 방법을 제안한다. 제안하는 방법은 무늬가 적은 객체에서도 에지의 위치를 샘플링함으로써 보완적 특징점을 생성해 낸다. 그리고 검출된 보완적 특징점으로부터 얻어지는 그레이 값 변화도방향 정보와 컬러 정보를 가지고 있는 기술자를 생성한다. 그리고 생성된 기술자를 객체 단위로 묶어 낼 수 있도록 하는 코드북(Codebook)을 학습함으로써 각 객체를 구분해 낼 수 있는 강건한 히스토그램를 생성한다. 생성된 코드북을 활용함으로써 제안하는 방법은 객체의 크기 및 환경 변화, 3차원 회전의 경우에도 기존의 방법보다 강건하게 인식한다. 실험 결과 제안하는 방법은 75.8% 인식률을 보이는 것을 확인하였다. 이 방법은 증강현실 응용에 정보 제시를 위해 가장 먼저 이루어지는 핵심 기술로써 활용될 수 있다.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.41
no.5
/
pp.23-34
/
2004
In this paper we propose a feature point tracking algorithm using optical flow under non-prior taming active feature model (NPT-AFM). The proposed algorithm mainly focuses on analysis non-rigid objects[1], and provides real-time, robust tracking by NPT-AFM. NPT-AFM algorithm can be divided into two steps: (i) localization of an object-of-interest and (ii) prediction and correction of the object position by utilizing the inter-frame information. The localization step was realized by using a modified Shi-Tomasi's feature tracking algoriam[2] after motion-based segmentation. In the prediction-correction step, given feature points are continuously tracked by using optical flow method[3] and if a feature point cannot be properly tracked, temporal and spatial prediction schemes can be employed for that point until it becomes uncovered again. Feature points inside an object are estimated instead of its shape boundary, and are updated an element of the training set for AFH Experimental results, show that the proposed NPT-AFM-based algerian can robustly track non-rigid objects in real-time.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.586-588
/
2003
현재 많이 연구되는 영상융합(Image fusion)에서는 필히 두 영상의 정합(alignment)이 이루어져야만 수행된다. 각기 다른 특징을 갖는 센서(EO.IR.Radar등)로부터 얻는 영상에서는 각각 다른 특징점 정보를 가지므로, 특징점을 이용한 영상 정합 구현에는 전처리 과정이 매우 복잡하고 까다롭게 이루어져야 한다. 본 논문에서는 Correlation에 대한 통계적 상관 관계를 이용하여. 전처리 과정을 단순하게 수행 하여도 매우 강건한 영상 정합이 이루어지도록 구현 하였다. 또한, 통계적 기법에 적합하도록, 효율적인 전처리 과정을 통해 계산량이 적어 지는 방법을 제안 한다.
Proceedings of the Korea Information Processing Society Conference
/
2013.05a
/
pp.374-376
/
2013
증강 현실(Argument Reality)에 대한 관심이 증가함에 따라 빠르고 강건한 물체 추적(Object Tracking)기법의 개발이 큰 이슈가 되고 있다. 특히, 마커를 사용하지 않는 경우에 추적 속도와 정확도의 정보가 이루어지는 강건한 Markerless 3D 추적 기술은 많은 연구가 이루어지고 있다. 본 논문에서는 SIFT(Scale Invariant Feature Transform)를 이용한 특징점 추출 및 매칭 기법을 통하여 높은 정확도의 물체 추적기법을 제안한다. 그리고 실시간으로 적용하기 어려운 SIFT의 느린 특징점 추출과 매칭 단계를 GPU 기반의 병렬화 작업을 통하여 개선시켜 향상된 추적 속도를 보여준다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.11
/
pp.2478-2484
/
2010
In this paper, real-time detection methods for Panorama system Key-Points offers. A recent study in PANORAMA system real-time area navigation or DVR to apply such research has recently been actively. The detection of the Key-Point is the most important elements that make up a Panorama system. Not affected by contrast, scale, Orientation must be detected Key-Point. Existing research methods are difficult to use in real-time Because it takes a lot of computation time. Therefore, this paper propose BLOG(BitRate Laplacian Of Gaussian)method for faster time Key-Point Detecting and Through various experiments to detect the Speed, Computation, detection performance is compared against.
Journal of the Korea Institute of Information and Communication Engineering
/
v.10
no.3
/
pp.535-541
/
2006
This paper proposes a robust method to find corresponding points for un-calibrated stereo images by using a classical method based on the epipolar constraints and motion flows. If we detect matching for the only epipolar geometry, the problem is very high. Therefore, in order to nod an initial set of matches, we use the correlation technique and then exploit motion vectors to remove mismatches among matching candidates. Then, the epipolar geometry can be accurately estimated using a veil adapted criterion and computed the fundamental matrix. The proposed algorithm has been widely tested and works remarkably well in various scenes, evenly, with many repetitive patterns. The results show that the proposed algorithm is better than the conventional.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.06a
/
pp.28-31
/
2014
본 논문에서는 블랙박스 혹은 운전석에 장착된 카메라로부터 얻어진 차량 영상에 대한 영역별 수직 히스토그램 매칭 및 선형 회귀분석 모델(linear regression model)을 활용한 강건한 차량 운행 동영상의 안정화(video stabilization) 기법을 제안한다. 동영상 안정화 기법은 영상의 흔들림 보정뿐 아니라 동영상 내 강건한 특징점 추적 및 매칭을 위한 이전의 전처리 과정으로 적용된다. 일반적으로 촬영 과정에서 많은 떨림이 포함될 수 있는 야외 CCTV 영상이나 손으로 들고(hand-held) 촬영된 동영상에 대한 흔들림 보정 등에 적용되고 있으나 영상 내 특징점이 지속적으로 변하고 영상의 변화 정도가 매우 심한 차량 운행 동영상에서는 적용된 사례가 드물다. 본 연구에서는 일반적인 비디오 안정화 기술이 적용되기 어려운 차량 운행 동영상에 대하여 수직 투영 히스토그램 매칭 및 선형 회귀분석 모델 기반의 안정화 기법을 제안한다. 제안된 기법은 입력영상에 대한 영역별 수직 투영 히스토그램 매칭을 수행하고 선형 회귀모델을 통해 영상에 나타나는 수직 및 회전이동 변환을 선형 근사하여 시간 영역 상의 입력 영상에 대한 안정화를 달성한다. 제안 방법의 검증을 위해 블랙박스로 촬영된 실제 동영상에 동영상 안정화 기술을 적용하였으며, 운행 중 불규칙한 노면으로 인한 영상의 흔들림이 효과적으로 제거되는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.