• 제목/요약/키워드: 감정분류

검색결과 497건 처리시간 0.027초

오피니언 마이닝을 활용한 블로그의 극성 분류 기법 (The Blog Polarity Classification Technique using Opinion Mining)

  • 이종혁;김원상;박제원;최재현
    • 디지털콘텐츠학회 논문지
    • /
    • 제15권4호
    • /
    • pp.559-568
    • /
    • 2014
  • 기존의 감정분석을 통한 극성 분류는 주로 평점을 기반으로 하는 상품평을 기준으로 문장규칙을 이용하여 분석해왔다. 이러한 분석방법은 평점이 없는 블로그 같은 경우 적용되기 어려움 점이 있고 댓글 아르바이트나 관리자에 의해 상품평이 조작될 가능성이 있어서 상품평 만으로는 상품, 매장에 대한 의견을 파악하기에는 어려움이 있다. 이러한 문제점을 고려할 때 개인들의 솔직한 의견이 담겨 있는 블로그를 분석하여 극성을 분류하면 상품, 매장에 대한 올바른 이해가 가능하다. 본 논문은 도메인별로 블로그 글에 대한 고빈도 단어를 추출하여 주제어를 선정하고, 선정된 주제어를 기준으로 제안하는 감정분석 기법을 적용하여 블로그 글에 대한 극성을 분류한다. 감정분석 기법의 성능을 평가하기 위하여 정보 검색 분야에서 사용되는 측정지표 Precision, Recall, F-score를 사용하여 본 연구의 극성 분류기법의 유용성을 검증한다. 평가 결과 기존의 상품평을 문장규칙을 이용하여 분석하여 극성 분류를 하는 기법들에 비해서 제안한 감정분석 기법을 적용할 경우에 우수한 성능으로 극성 분류를 하는 것으로 나타났다.

상황에 민감한 베이지안 분류기를 이용한 얼굴 표정 기반의 감정 인식 (Emotion Recognition Based on Facial Expression by using Context-Sensitive Bayesian Classifier)

  • 김진옥
    • 정보처리학회논문지B
    • /
    • 제13B권7호
    • /
    • pp.653-662
    • /
    • 2006
  • 사용자의 상황에 따라 적절한 서비스를 제공하는 컴퓨팅 환경을 구현하려는 유비쿼터스 컴퓨팅에서 사람과 기계간의 효과적인 상호작용과 사용자의 상황 인식을 위해 사용자의 얼굴 표정 기반의 감정 인식이 HCI의 중요한 수단으로 이용되고 있다. 본 연구는 새로운 베이지안 분류기를 이용하여 상황에 민감한 얼굴 표정에서 기본 감정을 강건하게 인식하는 문제를 다룬다. 표정에 기반한 감정 인식은 두 단계로 나뉘는데 본 연구에서는 얼굴 특징 추출 단계는 색상 히스토그램 방법을 기반으로 하고 표정을 이용한 감정 분류 단계에서는 학습과 테스트를 효과적으로 실행하는 새로운 베이지안 학습 알고리즘인 EADF(Extended Assumed-Density Filtering)을 이용한다. 상황에 민감한 베이지안 학습 알고리즘은 사용자 상황이 달라지면 복잡도가 다른 분류기를 적용할 수 있어 더 정확한 감정 인식이 가능하도록 제안되었다. 실험 결과는 표정 분류 정확도가 91% 이상이며 상황이 드러나지 않게 얼굴 표정 데이터를 모델링한 결과 10.8%의 실험 오류율을 보였다.

Convolutional Neural Network Model Using Data Augmentation for Emotion AI-based Recommendation Systems

  • Ho-yeon Park;Kyoung-jae Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.57-66
    • /
    • 2023
  • 본 연구에서는 딥러닝 기법과 정서적 AI를 적용하여 사용자의 감정 상태를 추정하고 이를 추천 과정에 반영할 수 있는 추천 시스템에 대한 새로운 연구 프레임워크를 제안한다. 이를 위해 분노, 혐오, 공포, 행복, 슬픔, 놀람, 중립의 7가지 감정을 각각 분류하는 감정분류모델을 구축하고, 이 결과를 추천 과정에 반영할 수 있는 모형을 제안한다. 그러나 일반적인 감정 분류 데이터에서는 각 레이블 간 분포 비율의 차이가 크기 때문에 일반화된 분류 결과를 기대하기 어려울 수 있다. 본 연구에서는 감정 이미지 데이터에서 혐오감 등의 감정 개수가 부족한 경우가 많으므로 데이터 증강을 이용한다. 마지막으로, 이미지 증강을 통해 데이터 기반의 감정 예측 모델을 추천시스템에 반영하는 방법을 제안한다.

비언어적 감정표현을 위한 애니메이션 이모티콘의 제작방향 제시 (Design method of Animation Emoticons for Non-Verbal Expression of Emotion)

  • 안성혜;윤세진
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2006년도 추계 종합학술대회 논문집
    • /
    • pp.200-204
    • /
    • 2006
  • 이모티콘은 현재 CMC 커뮤니케이션 상에서 감정표현을 나타내는 의사소통의 보조수단으로 사용되고 있다. 이모티콘은 텍스트 이모티콘에서 이미지 이모티콘, 애니메이션 이모티콘에 이르기까지 다양한 형태로 발전되어 왔다. 그러나 감정표현의 세분화된 분류가 미흡하여 기본감정만을 나타낼 수 있을 뿐 그 밖에 감정표현의 다양성을 가지고 있지 못하다. 따라서 다양한 감정표현이 가능한 이모티콘들을 편리하고, 간단하게 사용할 수 있도록 하는 모듈화 된 애니메이션 이모티콘 개발을 위해서는 감정들을 세분화하여 분류해줄 필요가 있다. 본 연구는 메신저상의 애니메이션 이모티콘을 중심으로 얼굴표정, 손동작, 상황설정에 따른 감정표현들을 분류하여 분석해보고, 애니메이션 이모티콘의 제작방향을 제시하고자 한다.

  • PDF

뇌파를 이용한 감정의 패턴 분류 기술 (Pattern Classification of Four Emotions using EEG)

  • 김동준;김영수
    • 한국정보전자통신기술학회논문지
    • /
    • 제3권4호
    • /
    • pp.23-27
    • /
    • 2010
  • 본 연구에서는 감성 평가 시스템 가장 적합한 파라미터를 찾기 위하여 3가지 뇌파 파라미터를 이용하여 감정 분류 실험을 하였다. 뇌파 파라미터는 선형예측기계수(linear predictor coefficients)와 FFT 스펙트럼 및 AR 스펙트럼의 밴드별 상호상관계수(cross-correlation coefficients)를 이용하였으며, 감정은 relaxation, joy, sadness, irritation으로 설정하였다. 뇌파 데이터는 대학의 연극동아리 학생 4명을 대상으로 수집하였으며, 전극 위치는 Fp1, Fp2, F3, F4, T3, T4, P3, P4, O1, O2를 사용하였다. 수집된 뇌파 데이터는 전처리를 거친 후 특징 파라미터를 추출하고 패턴 분류기로 사용된 신경회로망(neural network)에 입력하여 감정 분류를 하였다. 감정 분류실험 결과 선형예측기계수를 이용하는 것이 다른 2가지 보다 좋은 성능을 나타내었다.

  • PDF

감정요소를 이용한 SNS 메시지 분류기 구현에 대한 연구 (A Study on the Implementation of SNS Message Classification by Emotion Factors)

  • 김재영;김명관
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권4호
    • /
    • pp.217-222
    • /
    • 2011
  • 최근 SNS가 급격하게 성장하고 있고 많은 사용자들이 이 SNS를 하나의 다른 커뮤니케이션 매체로 사용하고 있다. SNS를 이용하는 개인 사용자들은 자신의 소식과 감정의 변화를 표현하는 수단으로 SNS를 이용하고 있다. 이에 본 연구에서는 감정을 나타내는 감정 요소를 이용하여 메시지를 분류하는 프로그램을 구현하였다. 감정 성분 추출은 OMLS(Ocean-Monmouth Legal Services)에 있는 감정 어휘를 이용하여 로젯(Roget)의 시소러스와 워드넷(WordNet)을 이용하여 이루어졌다.

의미 지향성 분석을 통한 단문 텍스트 기반 감정인지 (Emotion Recognition based on Short Text using Semantic Orientation Analysis)

  • 김현우;이승룡;정태충;윤석환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.375-377
    • /
    • 2012
  • 스마트폰과 같은 모바일 기기가 발전함에 따라 SNS, 모바일 메신저, SMS와 같은 단문 기반 메시지는 자신의 감정을 가장 잘 표현하는 매체이다. 그럼에도 불구하고 기존 연구는 주로 장문의 텍스트로부터 긍정, 부정 분류나 문서의 성향을 분석하는 것에 그치는 경우가 많다. 의미지향(Semantic Orientation)방법은 검색엔진을 통해 감정 키워드와 인지하고자 하는 단어의 동시 빈출 정도를 PMI로 계산한 것으로 WordNet과 같은 의미 사전이 존재하지 않는 한국어의 특성에서 적용 가능한 방법이다. 본 논문에서는 의미 지향성 및 다른 텍스트 기반 감정 분류 기술에 대해 비교하고 이들을 활용하여 한국어로 구성된 단문 텍스트에서 효율적인 감정 분류 기법을 제안하고자 한다.

임베딩 자질을 이용한 대화의 감정 분류 (Emotion Classification in Dialogues Using Embedding Features)

  • 신동원;이연수;장정선;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.109-114
    • /
    • 2015
  • 대화 시스템에서 사용자 발화에 대한 감정 분석은 적절한 시스템 응답과 서비스를 제공하는데 있어 매우 중요한 정보이다. 본 연구에서는 단순한 긍, 부정이 아닌 분노, 슬픔, 공포, 기쁨 등 Plutchick의 8 분류 체계에 해당하는 상세한 감정을 분석 하는 데 있어, 임베딩 모델을 사용하여 기존의 어휘 자질을 효과적으로 사용할 수 있는 새로운 방법을 제안한다. 또한 대화 속에서 발생한 감정의 지속성을 반영하기 위하여 문장 임베딩 벡터와 문맥 임베딩 벡터를 자질로서 이용하는 방법에 대해 제안한다. 실험 결과 제안하는 임베딩 자질은 특히 내용어에 대해 기존의 어휘 자질을 대체할 수 있으며, 데이터 부족 문제를 다소 해소하여 성능 향상에 도움이 되는 것으로 나타났다.

  • PDF

데이터마이닝 기법을 이용한 감정 기반 음악 분류 (Music Classification Based On Emotion Utilizing Data Mining)

  • 조우연;손태식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.941-944
    • /
    • 2015
  • 저장 장치의 급속한 발전으로 인해 기존에 서비스할 수 없었던 개인 사용자를 위한 클라우드 서비스가 활성화되고 있다. 이 중 음악을 대상으로 하는 스트리밍 및 공유 서비스는 다양한 음악의 종류를 수용하기 위해 체계적인 분류를 필요로 한다. 기존의 분류체계는 단순히 작곡가나 업로더의 의견에 의해서 일방적으로 정해지기 때문에 사용자가 중심이 되는 클라우드 서비스에는 어울리지 않는다. 따라서 본 논문은 이와 같은 문제점을 해결하기 위해 사랑의 감정을 기준으로 새로운 분류체계를 제안한다. 자동적인 분류를 위해 데이터마이닝 기법을 접목시켰으며, 원활한 마이닝을 위해 오디오 음악 파일(raw data)을 정해진 크기로 자르고 feature extraction을 통해 오디오 음악 파일에 대한 전처리를 수행하였다. 이후 feature selection을 수행하기 위해 clustering을 이용해 유효한 중요도를 지나는 feature를 선별하였으며 선별된 feature를 토대로 SVN(Support Vector Machine)을 이용해 feature의 중요도에 대한 유효성을 검증함과 동시에 분류를 수행하여 감정을 기반으로 분류한 결과를 보였다.

인터넷 감정기호를 이용한 긍정/부정 말뭉치 구축 및 감정분류 자동화 (Automatic Construction of a Negative/positive Corpus and Emotional Classification using the Internet Emotional Sign)

  • 장경애;박상현;김우제
    • 정보과학회 논문지
    • /
    • 제42권4호
    • /
    • pp.512-521
    • /
    • 2015
  • 네티즌은 인터넷을 통해서 상품을 구매하고 상품에 대한 감정을 긍정 혹은 부정으로 상품평에 표현한다. 상품평에 대한 분석은 잠재적 소비자뿐만 아니라 기업의 의사결정에 중요한 자료가 된다. 따라서 인터넷의 대량 리뷰에서 의미 있는 정보를 분석하여 의견을 도출하는 오피니언 마이닝 기술의 중요성이 증대되고 있다. 기존의 연구는 대부분이 영어를 기반으로 진행되었고 아직 한글에 대한 상품평 분석은 활발히 이루어 지지 않고 있다. 또한 한글은 영어와 달라 꾸미는 말과 어미가 복잡한 특성을 갖고 있다. 그리고 기존의 연구는 통계적 기법, 사전 기법, 기계학습 기법 등을 사용하여 연구되었으나 인터넷 언어의 특성을 감안하지는 못하였다. 본 연구에서는 감정이 포함된 인터넷 언어의 특성을 분석하여 감정분석의 정확률을 높이는 감정분류 방법을 제안한다. 이를 통해 데이터에 독립적인 인터넷 감정기호를 이용해서 자동으로 긍정 및 부정 상품평을 분류할 수 있었고 높은 정확률, 재현율, Coverage 결과를 통해서 제안 알고리즘의 유효성을 확인할 수 있었다.